Journal of Biological Physics

, Volume 31, Issue 1, pp 87–120

Dynamics of Bio-Polymeric Brushes Growing from a Cellular Membrane: Tentative Modelling of the Actin Turnover within an Adhesion Unit; the Podosome

  • Thierry Biben
  • Jean-Christophe Géminard
  • Francisco Melo
Article

Abstract

Podosomes are involved in the adhesion process of various cells to a solid substrate. They have been proven to consist of a dense actin core surrounded by an actin cloud. The podosomes, which nucleate when the cell comes in the vicinity of a substrate, contribute to link the membrane to the solid surface, but rather than frozen links, collective dynamical behaviors are experimentally observed. Depending on the differentiation stage, podosomes assemble and form clusters, rings or belts. Considering the dynamics of a polymeric brush, we design a simple model aiming at the description of a single podosome, the basic unit of these complex adhesion-structures and compare our theoretical conclusions to recent experimental results. Particularly, we explain, by solving the diffusion problem around the podosome, why the structure is likely to have a finite life-span.

Key words

polymeric brush podosome actin turnover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chellaiah, M., Kizer, N., Silva, M., Alvarez, U., Kwiatkowski, D. and Hruska, K.A. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J. Cell Biol. 148 (2000), 665–678.CrossRefPubMedGoogle Scholar
  2. 2.
    Destaing, O., Saltel, F., Géminard, J.-Ch., Jurdic, P. and Bard, F. Podosomes Display Actin turnover and Dynamic Self-Organization in Osteoclasts Expressing Actin-Green Fluorescent Protein. Mol. Biol. Cell 14 (2003) 407–416.CrossRefPubMedGoogle Scholar
  3. 3.
    Einstein, A. ber die von der molekularkinetischen Theorie der Wrme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17 (1905), 549.Google Scholar
  4. 4.
    Gavazzi, I., Nermut, M.V. and Marchisio, P.C. Ultrastructure and gold-immunolabelling of cell-substratum adhesions (podosomes) in RSV-transformed BHK cells. J. Cell Sci. 94 (1989), 85–89.PubMedGoogle Scholar
  5. 5.
    Marchisio, P.C., Cirillo, D., Naldini, L., Primavera, M.V., Teti, A. and Zambonin-Zallone, A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 99 (1984), 1696–1705.CrossRefPubMedGoogle Scholar
  6. 6.
    Marchisio, P.C., Cirillo, D., Teti, A., Zambonin-Zallone, A. and Tarone, G. Rous sarcoma virus-transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament-membrane interactions. Exp. Cell Res. 169 (1987), 202–214.CrossRefPubMedGoogle Scholar
  7. 7.
    Nermut, M.V., Eason, P., Hirst, E.M. and Kellie, S. Cell/substratum adhesions in RSV-transformed rat fibroblasts. Exp. Cell Res. 193 (1991), 382–397.CrossRefPubMedGoogle Scholar
  8. 8.
    Pantaloni, D., Le Clainche, C. and Carlier, M.F. Mechanism of actin-based motility. Science 292 (2001), 1502–1506.CrossRefPubMedGoogle Scholar
  9. 9.
    Pfaff, M. and Jurdic, P. Podosomes in osteoclasts-like cells: structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin αVβ3. J. Cell Sci. 114 (2001) 2775–2786.PubMedGoogle Scholar
  10. 10.
    Tarone, G., Cirillo, D., Giancotti, F.G., Comoglio, P.M. and Marchisio, P.C. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protusions of the ventral membrane called podosomes. Exp. Cell Res. 159 (1985) 141–157.PubMedGoogle Scholar
  11. 11.
    Wang, Y.L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101 (1985), 597–602.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Thierry Biben
    • 1
  • Jean-Christophe Géminard
    • 2
  • Francisco Melo
    • 3
  1. 1.Laboratoire de Spectometrie Physique, CNRS UMR 5588Universite Joseph FourierSaint Martin d’HeresFrance
  2. 2.Laboratoire de Physique, CNRS UMR 5672Ecole Normale SuperieureLyon Cedex 07France
  3. 3.Laboratorio de Fisica No LinealUniversidad de Santiago de Chile Avenida Ecuador 3493SantiagoChile

Personalised recommendations