Journal of Biological Physics

, Volume 31, Issue 3–4, pp 501–514 | Cite as

Electromagnetic Field of Microtubules: Effects on Transfer of Mass Particles and Electrons

  • Jiří Pokorný
  • Jiří Hašek
  • František Jelínek


Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant.

Key words

directed transport electromagnetic fields in cells organization in biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Groot, M.L., Vos, M.H., Schlichting, I., van Mourik, F., Joffre, M., Lambry, J.C. and Martin, J.-L.: Coherent Infrared Emission from Myoglobin Crystals: An Electric Field Measurement, Proc. Natl. Acad. Sci. U.S.A. 99(3), (2002) 1323–1328.CrossRefADSGoogle Scholar
  2. Vos, M.H., Lambry, J.C. and Martin, J.-L.: Excited State Coherent Vibrational Motion in Deoxymyoglobin, J. Chin. Chem. Soc. 47(4A), (2000), 765–768.Google Scholar
  3. Liebl, U., Lipowski, G., Negrerie, M., Lambry, J.C., Martin, J.-L. and Vos, M.H.: Coherent Reaction Dynamics in a Bacterial Cytochrome c Oxidase, Nature 401(6749), (1999), 181–184.ADSGoogle Scholar
  4. Lambry, J.C., Vos, M.H. and Martin, J.-L.: Molecular Dynamics Simulation of Carbon Monoxide Dissociation from Heme a(3) in Cytochrome c Oxidase from Paracoccus denitrificans, J. Phys. Chem. A 103(49), (1999), 10132–10137.Google Scholar
  5. Bonvalet, A., Nagle, J., Berger, V., Migus, A., Martin, J.-L. and Joffre, M.: Femtosecond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells, Phys. Rev. Lett. 76(23), (1996), 4392–4395.CrossRefADSGoogle Scholar
  6. Vos, M.H. and Martin, J.-L.: Femtosecond Processes in Proteins, Biochem. Biophys. Acta 1411 (1999), 1–20.Google Scholar
  7. Pokorný, J.: Endogenous Electromagnetic Forces in Living Cells: Implications for Transfer of Reaction Components, Electro- Magnetobiol. 20(1), (2001), 59–73.Google Scholar
  8. Li, W. and Kaneko, K.: Long-Range Correlation and Partial 1/fα Spectrum in Noncoding DNA Sequence, Europhys. Lett. 17 (1992), 655–660.ADSGoogle Scholar
  9. Voss, R.F.: Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences, Phys. Rev. Lett. 68 (1992), 3805–3808.CrossRefADSGoogle Scholar
  10. Arneodo, A., Bacry, E., Graves, P.V. and Muzy, J.F.: Characterizing Long-Range Correlations in DNA Sequences from Wavelet Analysis, Phys. Rev. Lett. 74 (1995), 3293–3296.ADSGoogle Scholar
  11. Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Matsa, M.E., Peng, C.-K., Simons, M. and Stanley, E.H.: Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis, Phys. Rev. E 51 (1995), 5084–5091.CrossRefADSGoogle Scholar
  12. Herzel, H. and Grosse, I.: Correlations in DNA Sequences: The Role of Protein Coding Segments, Phys. Rev. E 55 (1997), 800–810.CrossRefADSGoogle Scholar
  13. Audit, B., Thermes, C., Vaillant, C., d'Aubenton-Carafa, Y., Muzy, J.F. and Arneodo, A.: Long-Range Correlation in Genomic DNA: A Signature of the Nucleosomal Structure, Phys. Rev. Lett. 86 (2001), 2471–2474.CrossRefADSGoogle Scholar
  14. Holste, D. and Grosse, I.: Repeats and Correlations in Human DNA Sequences, Phys. Rev. E 67 (2003), 061913-1–061913-7.Google Scholar
  15. Maciá, E., Domínguez-Adame, F. and Sánchez, A.: Effects of the Electronic Structure on the dc Conductance of Fibonacci Superlattices, Phys. Rev. B 49 (1994-II), 9503–9510.Google Scholar
  16. Roche, S., Bicout, D., Maciá, E. and Kats, E.: Long Range Correlations in DNA: Scaling Properties and Charge Transfer Efficiency, Phys. Rev. Lett. 91 (2003), 228101-1–228101-4.Google Scholar
  17. Bicout, D.J. and Kats, E.: Long-Range Electron Transfer in Periodic Nucleotide Base Stacks, Phys. Lett. A 300 (2002), 479–484.CrossRefADSGoogle Scholar
  18. Schulz, G.E and Schirmer, R.H.: Principles of Protein Structure, Springer, Berlin, 1979.Google Scholar
  19. Ladik, J. and Förner W.: The Beginnings of Cancer in the Cell, Springer, Berlin, 1994.Google Scholar
  20. Huang, X.Q., Jiang, S.S., Peng, R.W., Liu, Y.M., Qiu, F. and Hu, A.: Characteristic Wavefunctions of One-Dimensional Periodic, Quasiperiodic and Random Lattices, Modern Phys. Lett. B 17 (2003), 1461–1476.ADSCrossRefGoogle Scholar
  21. Frauenfelder, H., Wolynes, P.G. and Austin, R.H.: Biological Physics, Rev. Mod. Phys. Centenary, 71(2), (1999), S419–S430.Google Scholar
  22. Fröhlich, H.: Quantum Mechanical Concepts in Biology, in M. Marois (ed.), Theoretical Physics and Biology, North Holland, Amsterdam, 1969, pp.13–22.Google Scholar
  23. Fröhlich, H.: Bose Condensation of Strongly Excited Longitudinal Electric Modes, Phys. Lett. A 26 (1968), 402–403.ADSGoogle Scholar
  24. Fröhlich, H.: The Biological Effects of Microwaves and Related Questions, Advances in Electronics and Electron Phys. 53 (1980), 85–152.Google Scholar
  25. Šrobár, F.: An Equifinality Property of the Fröhlich Equations Describing Electromagnetic Activity of the Living Cells, in: Book of Abstracts of the XVIth Int. Symp. Bioelectrochem. Bioenerg., Bratislava, Slovakia, June 1–6, 2001, p. 167.Google Scholar
  26. Šrobár, F. and Pokorný, J.: Topology of Mutual Relationship in the Fröhlich Model, Bioelectrochem. Bioenerg. 41 (1996), 31–33.Google Scholar
  27. Šrobár, F. and Pokorný, J.: Causal Structure of the Fröhlich Model of Cellular Electromagnetic Activity, Electro- Magnetobiol. 18 (1999), 257–286.Google Scholar
  28. Pokorný, J., Jelínek, F. and Trkal, V.: Electric Field around Microtubules, Bioelectrochem, Bioenerg. 45 (1998), 239–245.Google Scholar
  29. Pokorný, J. and Wu, T.-M.: Biophysical Aspects of Coherence and Biological Order, Academia, Praha; Springer, Berlin, 1998.Google Scholar
  30. Pokorný, J.: Viscous Effects on Polar Vibrations in Microtubules, Electromagnetic Biol. Med. 22 (2003), 15–29.Google Scholar
  31. Pokorný, J.: Excitation of Vibrations in Microtubules in Living Cells, Bioelectrochem. 63 (2004), 321–326.Google Scholar
  32. Pohl, H.A.: Oscillating Fields about Growing Cells, Int. J. Quant. Chem. Quant. Biol. Symp. 7 (1980), 411–431.Google Scholar
  33. Rowlands, S. and Sewchand, L.S.: Quantum Mechanical Interaction of Human Erythrocytes, Canad. J. Physiol. Pharmacol. 60 (1982), 52–59.Google Scholar
  34. Albrecht-Buehler, G.: Rudimentary Form of Cellular ‘Vision’, Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 8288–8293.ADSGoogle Scholar
  35. Del Giudice, E., Doglia, S., Milani, M., Smith, C.W. and Vitiello, G.: Magnetic Flux Quantization and Josephson Behaviour in Living Systems, Phys. Scr. 40 (1989), 786–791.ADSGoogle Scholar
  36. Hölzel, R. and Lamprecht, I.: Electromagnetic Field around Biological Cells, Neural Network World 4 (1994), 327–337.Google Scholar
  37. Pokorný, J., Hašek, J., Jelínek, F., Šaroch, J. and Palán, B.: Electromagnetic Activity of Yeast Cells in the M Phase, Electro- Magnetobiol. 20 (2001), 371–396.Google Scholar
  38. Pelling, A.E., Sehati, S., Gralla, E.B., Valentine, J.S. and Gimzewski, J.K.: Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae, Science 305 (2004), 1147–1150.Google Scholar
  39. Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C. and Lubensky, T.C.: Microrheology, Stress Fluctuations, and Active Behavior of Living Cells, Phys. Rev. Lett. 91 (2003), 198101-1–198101-4.Google Scholar
  40. Caspi, A., Granek, R. and Elbaum, M.: Diffusion and Directed Motion in Cellular Transport, Phys. Rev. E 66 (2002), 011916-1–011916-12.Google Scholar
  41. Satarić, M., Tuszyński, J.A. and Žakula, R.B.: Kinklike Excitations as an Energy Transfer Mechanism in Microtubules, Phys. Rev. E 48 (1993), 589–597.ADSGoogle Scholar
  42. Tuszyński, J.A., Hameroff, S., Satarić, M.V., Trpisová, B. and Nip, M.L.A.: Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly, J. theor. Biol. 174 (1995), 371–380.Google Scholar
  43. Tuszyński, J.A. and Brown, J.A.: Models of Dielectric and Conduction Properties of Microtubules. In: Abstract Book of Int. Symp. Electromagnetic Aspects of Selforganization in Biol., Prague, July 9–12, 2000, pp. 3–4.Google Scholar
  44. Stracke, R., Böhm, K.J., Wollweber, L., Tuszyński J.A. and Unger, E.: Analysis of the Migration of Single Microtubules in Electric Fields, Biochem. Biophys. Res. Comm. 293 (2002), 602–609.CrossRefGoogle Scholar
  45. Caplow, M., Ruhlen, R.L. and Shanks, J.: The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice, J. Cell Biol. 127 (1994), 779–788.CrossRefGoogle Scholar
  46. Caplow, M. and Shanks, J.: Evidence that a Single Monolayer Tubulin-GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules, Molec. Biol. Cell 7 (1996), 663–675.Google Scholar
  47. Papoulis, A.: Probability, Random Variables and Stochastic Processes, McGraw Hill, New York, 1965.zbMATHGoogle Scholar
  48. Denisov, S., Klafter, J. and Urbakh, M.: Some New Aspects of Lévy Walks and Flights: Directed Transport, Manipulation Through Flights and Population Exchange, Physica D 187 (2004), 89–99.CrossRefADSMathSciNetzbMATHGoogle Scholar
  49. Dekker, A.J.: Solid State Physics, Prentice-Hall, Englewood Cliffs, 1957.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jiří Pokorný
    • 1
  • Jiří Hašek
    • 2
  • František Jelínek
    • 1
  1. 1.Institute of Radio Engineering and ElectronicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4

Personalised recommendations