Journal of Biological Physics

, Volume 31, Issue 3–4, pp 417–432 | Cite as

A Spectroscopic Study of Structural Heterogeneity and Carbon Monoxide Binding in Neuroglobin

  • Karin Nienhaus
  • G. Ulrich NienhausEmail author


Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.

Key words

FTIR spectroscopy ligand binding neuroglobin temperature derivative spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Stryer, L.: Biochemistry, 4th ed., Freeman, San Francisco, 1995.Google Scholar
  2. Nienhaus, G.U. and Young, R.D.: Protein dynamics, VCH, New York, 1996.Google Scholar
  3. Frauenfelder, H., Sligar, S.G. and Wolynes, P.G.: The Energy Landscapes and Motions of Proteins, Science 254 (1991), 1598–1603.ADSGoogle Scholar
  4. Ansari, A., Berendzen, J., Bowne, S.F., Frauenfelder, H., Iben, I.E., Sauke, T.B., Shyamsunder, E. and Young, R.D.: Protein States and Proteinquakes, Proc. Natl. Acad. Sci. U.S.A. 82 (1985), 5000–5004.ADSGoogle Scholar
  5. Ansari, A., Berendzen, J., Braunstein, D., Cowen, B.R., Frauenfelder, H., Hong, M.K., Iben, I.E., Johnson, J.B., Ormos, P., Sauke, T.B., et al.: Rebinding and Relaxation in the Myoglobin Pocket, Biophys. Chem. 26 (1987), 337–355.CrossRefGoogle Scholar
  6. Andrews, B.K., Romo, T., Clarage, J.B., Pettitt, B.M. and Phillips, G.N., Jr.: Characterizing Global Substates of Myoglobin, Structure 6 (1998), 587–594.CrossRefGoogle Scholar
  7. Garcia, A.E., Blumenfeld, R., Hummer, G. and Krumhansl, J.A.: Multi-Basin Dynamics of a Protein in a Crystal Environment, Physica D 107 (1997), 225–239.ADSGoogle Scholar
  8. Becker, O.M. and Karplus, M.: The Topology of Multidimensional Potential Energy Surfaces: Theory and Application to Peptide Structure and Kinetics, J. Chem. Phys. 106 (1997), 1495–1517.CrossRefADSGoogle Scholar
  9. McMahon, B.H., Müller, J.D., Wraight, C.A. and Nienhaus, G.U.: Electron Transfer and Protein Dynamics in the Photosynthetic Reaction Center, Biophys. J. 74 (1998), 2567–2587.Google Scholar
  10. Thorn, L.D. and Wiersma, D.A.: Real Time Observation of Low-Temperature Protein Motions, Phys. Rev. Lett. 74 (1995), 2138–2141.ADSGoogle Scholar
  11. Hofmann, C., Aartsma, T.J., Michel, H. and Kohler, J.: Direct Observation of Tiers in the Energy Landscape of a Chromoprotein: A Single-Molecule Study, Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 15534–15538.CrossRefADSGoogle Scholar
  12. Braunstein, D.P., Chu, K., Egeberg, K.D., Frauenfelder, H., Mourant, J.R., Nienhaus, G.U., Ormos, P., Sligar, S.G., Springer, B.A. and Young, R.D.: Ligand Binding to Heme Proteins: III. FTIR Studies of His-E7 and Val-E11 Mutants of Carbonmonoxymyoglobin, Biophys. J. 65 (1993), 2447–2454.Google Scholar
  13. Li, T., Quillin, M.L., Phillips, G.N., Jr. and Olson, J.S.: Structural Determinants of the Stretching Frequency of CO Bound to Myoglobin, Biochemistry 33 (1994), 1433–1446.Google Scholar
  14. Vojtechovsky, J., Chu, K., Berendzen, J., Sweet, R.M. and Schlichting, I.: Crystal Structures of Myoglobin-Ligand Complexes at Near-Atomic Resolution, Biophys. J. 77 (1999), 2153–2174.Google Scholar
  15. Johnson, J.B., Lamb, D.C., Frauenfelder, H., Müller, J.D., McMahon, B., Nienhaus, G.U. and Young, R.D.: Ligand Binding to Heme Proteins. VI. Interconversion of Taxonomic Substates in Carbonmonoxymyoglobin, Biophys. J. 71 (1996), 1563–1573.Google Scholar
  16. Müller, J.D., McMahon, B.H., Chien, E.Y., Sligar, S.G. and Nienhaus, G.U.: Connection between the Taxonomic Substates and Protonation of Histidines 64 and 97 in Carbonmonoxy Myoglobin, Biophys. J. 77 (1999), 1036–1051.Google Scholar
  17. Kriegl, J.M., Nienhaus, K., Deng, P., Fuchs, J. and Nienhaus, G.U.: Ligand Dynamics in a Protein Internal Cavity, Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 7069–7074.CrossRefADSGoogle Scholar
  18. Alben, J.O., Beece, D., Bowne, S.F., Doster, W., Eisenstein, L., Frauenfelder, H., Good, D., McDonald, J.D., Marden, M.C., Moh, P.P., Reinisch, L., Reynolds, A.H., Shyamsunder, E. and Yue, K.T.: Infrared Spectroscopy of Photodissociated Carboxymyoglobin at Low Temperatures, Proc. Natl. Acad. Sci. U.S.A. 79 (1982), 3744–3748.ADSGoogle Scholar
  19. Nienhaus, K., Deng, P., Kriegl, J.M. and Nienhaus, G.U.: Structural Dynamics of Myoglobin: The Effect of Internal Cavities on Ligand Migration and Binding, Biochemistry 42 (2003), 9647–9658.Google Scholar
  20. Nienhaus, K., Deng, P., Kriegl, J.M. and Nienhaus, G.U.: Structural Dynamics of Myoglobin: Spectroscopic and Structural Characterization of Ligand Docking Sites in Myoglobin Mutant L29W, Biochemistry 42 (2003), 9633–9646.Google Scholar
  21. Nienhaus, K., Deng, P., Olson, J.S., Warren, J.J. and Nienhaus, G.U.: Structural Dynamics of Myoglobin: Ligand Migration and Binding in Valine 68 Mutants, J. Biol. Chem. 278 (2003), 42532–42544.CrossRefGoogle Scholar
  22. Nienhaus, G.U., Mourant, J.R., Chu, K. and Frauenfelder, H.: Ligand Binding to Heme Proteins: The Effect of Light on Ligand Binding in Myoglobin, Biochemistry 33 (1994), 13413–13430.CrossRefGoogle Scholar
  23. Ostermann, A., Waschipky, R., Parak, F.G. and Nienhaus, G.U.: Ligand Binding and Conformational Motions in Myoglobin, Nature 404 (2000), 205–208.ADSGoogle Scholar
  24. Lim, M., Jackson, T.A. and Anfinrud, P.A.: Mid-Infrared Vibrational Spectrum of CO after Photodissociation from Heme: Evidence for a Ligand Docking Site in the Heme Pocket of Hemoglobin and Myoglobin, J. Chem. Phys. 102 (1995), 4355–4366.ADSGoogle Scholar
  25. Lim, M., Jackson, T.A. and Anfinrud, P.A.: Ultrafast Rotation and Trapping of Carbon Monoxide Dissociated from Myoglobin, Nat. Struct. Biol. 4 (1997), 209–214.CrossRefGoogle Scholar
  26. Tilton, R.F., Jr., Kuntz, I.D., Jr. and Petsko, G.A.: Cavities in proteins: Structure of a Metmyoglobin-Xenon Complex Solved to 1.9 Å, Biochemistry 23 (1984), 2849–2857.CrossRefGoogle Scholar
  27. Burmester, T., Weich, B., Reinhardt, S. and Hankeln, T.: A Vertebrate Globin Expressed in the Brain, Nature 407 (2000), 520–523.CrossRefADSGoogle Scholar
  28. Venis, S.: Neuroglobin might Protect Brain Cells During Stroke, Lancet 358 (2001), 2055.Google Scholar
  29. Sun, Y., Jin, K., Mao, X.O., Zhu, Y. and Greenberg, D.A.: Neuroglobin is Up-Regulated by and Protects Neurons from Hypoxic-Ischemic Injury, Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 15306–15311.ADSGoogle Scholar
  30. Sun, Y., Jin, K., Peel, A., Mao, X.O., Xie, L. and Greenberg, D.A.: Neuroglobin Protects the Brain from Experimental Stroke in vivo, Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 3497–3500.ADSGoogle Scholar
  31. Wakasugi, K., Nakano, T. and Morishima, I.: Oxidized Human Neuroglobin Acts as a Heterotrimeric Galpha Protein Guanine Nucleotide Dissociation Inhibitor, J. Biol. Chem. 278 (2003), 36505–36512.CrossRefGoogle Scholar
  32. Vallone, B., Nienhaus, K., Matthes, A., Brunori, M. and Nienhaus, G.U.: The Structure of Carbonmonoxy Neuroglobin Reveals a Heme-Sliding Mechanism for Control of Ligand Affinity, Proc. Natl. Acad. Sci. U.S.A., in press.Google Scholar
  33. Kriegl, J.M., Bhattacharyya, A.J., Nienhaus, K., Deng, P., Minkow, O. and Nienhaus, G.U.: Ligand Binding and Protein Dynamics in Neuroglobin, Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 7992–7997.CrossRefADSGoogle Scholar
  34. Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T. and Bolognesi, M.: Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity, Structure (Camb.) 11 (2003), 1087–1095.CrossRefGoogle Scholar
  35. Vallone, B., Nienhaus, K., Brunori, M. and Nienhaus, G.U.: The Structure of Murine Neuroglobin: Novel Pathways for Ligand Migration and Binding, Proteins 56 (2004), 85–92.CrossRefGoogle Scholar
  36. Nienhaus, K., Kriegl, J.M. and Nienhaus, G.U.: Structural Dynamics in the Active Site of Murine Neuroglobin and Its Effects on Ligand Binding, J. Biol. Chem. 279 (2004), 22944–22952.Google Scholar
  37. Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M.C., Caubergs, R. and Moens, L.: Biochemical Characterization and Ligand Binding Properties of Neuroglobin, a Novel Member of the Globin Family, J. Biol. Chem. 276 (2001), 38949–38955.CrossRefGoogle Scholar
  38. Trent, J.T., Watts, R.A. and Hargrove, M.S.: Human Neuroglobin, a Hexacoordinate Hemoglobin that Reversibly Binds Oxygen, J. Biol. Chem. 276 (2001), 30106–30110.Google Scholar
  39. Uno, T., Ryu, D., Tsutsumi, H., Tomisugi, Y., Ishikawa, Y., Wilkinson, A.J., Sato, H. and Hayashi, T.: Residues in the Distal Heme Pocket of Neuroglobin: Implications for the Multiple Ligand Binding Steps, J. Biol. Chem. 279 (2003), 5886–5893.CrossRefGoogle Scholar
  40. Lamb, D.C., Nienhaus, K., Arcovito, A., Draghi, F., Miele, A.E., Brunori, M. and Nienhaus, G.U.: Structural Dynamics of Myoglobin: Ligand Migration Among Protein Cavities Studied by Fourier Transform Infrared/Temperature Derivative Spectroscopy, J. Biol. Chem. 277 (2002), 11636–11644.Google Scholar
  41. Nienhaus, G.U. and Nienhaus, K.: Infrared Study of Carbon Monoxide Migration among Internal Cavities of Myoglobin Mutant L29W, J. Biol. Phys. 28 (2002), 163–172.CrossRefGoogle Scholar
  42. Berendzen, J. and Braunstein, D.: Temperature-Derivative Spectroscopy: A Tool for Protein Dynamics, Proc. Natl. Acad. Sci. U.S.A. 87 (1990), 1–5.ADSGoogle Scholar
  43. Mourant, J.R., Braunstein, D.P., Chu, K., Frauenfelder, H., Nienhaus, G.U., Ormos, P. and Young, R.D.: Ligand Binding to Heme Proteins: II. Transitions in the Heme Pocket of Myoglobin, Biophys. J. 65 (1993), 1496–1507.Google Scholar
  44. Young, R.D. and Bowne, S.F.: Conformational Substates and Barrier Height Distributions in Ligand Binding to Heme Proteins, J. Chem. Phys. 81 (1984), 3730–3737.ADSGoogle Scholar
  45. Lamb, D.C., Kriegl, J., Kastens, K. and Nienhaus, G.U.: Quantum-Mechanical Tunneling of Water in Heme Proteins, J. Phys. Org. Chem. 13 (2000), 1–5.Google Scholar
  46. Alben, J.O., Beece, D., Bowne, S.F., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M., Moh, P.P., Reinisch, L., Reynolds, A.H. and Yue, K.T.: Isotope Effect in Molecular Tunneling, Phys. Rev. Lett. 44 (1980), 1157–1160.CrossRefADSGoogle Scholar
  47. Steinbach, P.J., Chu, K., Frauenfelder, H., Johnson, J.B., Lamb, D.C., Nienhaus, G.U., Sauke, T.B. and Young, R.D.: Determination of Rate Distributions from Kinetic Experiments, Biophys. J. 61 (1992), 235–245.CrossRefGoogle Scholar
  48. Steinbach, P.J., Ansari, A., Berendzen, J., Braunstein, D., Chu, K., Cowen, B.R., Ehrenstein, D., Frauenfelder, H., Johnson, J.B., Lamb, D.C., Luck, S., Mourant, J.R., Nienhaus, G.U., Ormos, P., Philipp, R., Xie, A. and Young, R.D.: Ligand Binding to Heme Proteins: Connection Between Dynamics and Function, Biochemistry 30 (1991), 3988–4001.CrossRefGoogle Scholar
  49. Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I.C.: Dynamics of Ligand Binding to Myoglobin, Biochemistry 14 (1975), 5355–5373.CrossRefGoogle Scholar
  50. Ormos, P., Szaraz, S., Cupane, A. and Nienhaus, G.U.: Structural Factors Controlling Ligand Binding to Myoglobin: A Kinetic Hole-Burning Study, Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 6762–6767.CrossRefADSGoogle Scholar
  51. Phillips, G.N., Jr., Teodoro, M.L., Li, T., Smith, B. and Olson, J.S.: Bound CO is a Molecular Probe of Electrostatic Potential in the Distal Pocket of Myoglobin, J. Phys. Chem. B 103 (1999), 8817–8829.CrossRefGoogle Scholar
  52. Nienhaus, K., Olson, J.S., Franzen, S. and Nienhaus, G.U.: The Origin of Stark Splitting in the Initial Photoproduct State of MbCO, J. Am. Chem. Soc. 127 (2005), 40–41.CrossRefGoogle Scholar
  53. Yang, F. and Phillips, G.N., Jr.: Crystal Structures of CO-, Deoxy- and Met-Myoglobins at Various pH Values, J. Mol. Biol. 256 (1996), 762–774.CrossRefGoogle Scholar
  54. Alben, J.O. and Caughey, W.S.: An Infrared Study of Bound Carbon Monoxide in the Human Red Blood Cell, Isolated Hemoglobin, and Heme Carbonyls, Biochemistry 7 (1968), 175–183.CrossRefGoogle Scholar
  55. Ray, G.B., Li, X.-Y., Ibers, J.A., Sessler, J.L. and Spiro, G.S.: How Far can Proteins Bend the FeCO Unit, J. Am. Chem. Soc. 116 (1994), 162–176.CrossRefGoogle Scholar
  56. Couture, M., Burmester, T., Hankeln, T. and Rousseau, D.L.: The Heme Environment of Mouse Neuroglobin. Evidence for the Presence of two Conformations of the Heme Pocket, J. Biol. Chem. 276 (2001), 36377–36382.CrossRefGoogle Scholar
  57. Bhattacharya, S., Sukits, S.F., MacLaughlin, K.L. and Lecomte, J.T.: The Tautomeric State of Histidines in Myoglobin, Biophys. J. 73 (1997), 3230–3240.Google Scholar
  58. Yeh, S.R., Couture, M., Ouellet, Y., Guertin, M. and Rousseau, D.L.: A Cooperative Oxygen Binding Hemoglobin from Mycobacterium Tuberculosis. Stabilization of Heme Ligands by a Distal Tyrosine Residue, J. Biol. Chem. 275 (2000), 1679–1684.Google Scholar
  59. Schlichting, I., Berendzen, J., Phillips, G.N., Jr. and Sweet, R.M.: Crystal Structure of Photolysed Carbonmonoxy-Myoglobin, Nature 371 (1994), 808–812.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of BiophysicsUniversity of UlmUlmGermany
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.

Personalised recommendations