Journal of Biological Physics

, Volume 30, Issue 4, pp 325–344 | Cite as

Microtubule Dynamics may Embody a Stationary Bipolarity Forming Mechanism Related to the Prokaryotic Division Site Mechanism (Pole-to-Pole Oscillations)

Article

Abstract

Cell division mechanisms in eukaryotes and prokaryotes have until recently been seen as being widely different. However, pole-to-pole oscillations of proteins like MinE in prokaryotes are now known to determine the division plane. These protein waves arise through spontaneous pattern forming reaction—diffusion mechanisms, based on cooperative binding of the proteins to a quasistationary matrix (like the cell membrane or DNA). Rather than waves, stationary bipolar pattern formation may arise as well. Some of the involved proteins have eukaryotic homologs (e.g. FtsZ and tubulin), pointing to a possible ancient shared mechanism. Tubulin polymerizes to microtubules in the spindle. Mitotic microtubules are in a highly dynamical state, frequently undergoing rapid shortening (catastrophe), and fragments formed from the microtubule ends are inferred to enhance the destabilization. Here, we show that cooperative binding of such fragments to microtubules may set up a similar pattern forming mechanism as seen in prokaryotes. The result is a spontaneously formed, well controllable, bipolar state of microtubule dynamics in the cell, which may contribute to defining the bipolar spindle.

Key words

microtubule dynamics cell division|bipolarity|pole-to-pole oscillations|Turing structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berns, M.W. and Richardson, S.M.: Continuation of Mitosis after Selective Laser Microbeam Destruction of the Centriolar Region, J. Cell Biol. 75 (1977), 977–982.Google Scholar
  2. 2.
    Bolterauer, H., Limbach, H.-J. and Tuszynski, J.A.: Models of Assembly and Disassembly of Individual Microtubules: Stochastic and Averaged Equations, J. Biol. Phys. 25 (1999), 1–22.Google Scholar
  3. 3.
    Bornens, M., Paintrand, M. and Celati, C.: The Cortical Microfilament System of Lymphoblasts Displays a Periodic Oscillatory Activity in the Absence of Microtubules: Implication for Cell Polarity, J. Cell Biol. 109 (1989), 1071–1083.Google Scholar
  4. 4.
    Bucciarelli, E., Giansanti, M.G., Bonaccorsi, S. and Gatti, M.: Spindle Assembly and Cytokinesis in the Absence of Chromosomes during Drosophila Male Meiosis, J. Cell Biol. 160 (2003), 993–999.Google Scholar
  5. 5.
    Caplow, M. and Shanks, J.: Mechanism for Oscillatory Assembly of Microtubules, J. Biol. Chem. 265 (1990), 1414–1418.Google Scholar
  6. 6.
    Caplow, M. and Shanks, J.: Induction of Microtubule Catastrophe by Formation of Tubulin-GDP and Apotubulin Subunits at Microtubule Ends, Biochemistry 34 (1995), 15732–15741.Google Scholar
  7. 7.
    Carballido-López, R. and Errington, J.: A Dynamical Bacterial Cytoskeleton, Trends Cell Biol. 13 (2003), 577–583.Google Scholar
  8. 8.
    Carlier, M.F., Melki, R., Pantaloni, D., Hill, T.L. and Chen, Y.: Synchronous Oscillations in Microtubule Polymerization, Proc. Natl. Acad. Sci. U.S.A. 84 (1987), 5257–5261.Google Scholar
  9. 9.
    Carvalho, P., Tirnauer, J.S. and Pellman, D.: Surfing on Microtubule Ends, Trends Cell Biol. 13 (2003), 229–237.Google Scholar
  10. 10.
    Cassimiris, L.: The Oncoprotein 18/Stathmin Family of Microtubule Destabilizers, Curr. Opin. Cell Biol. 14 (2002), 18–24.Google Scholar
  11. 11.
    Caudron, N., Valiron, O., Usson, Y., Valiron, P. and Job, D.: A Reassessment of Factors Affecting Microtubule Assembly and Disassembly In Vitro, J. Mol. Biol. 297 (2000), 211–220.Google Scholar
  12. 12.
    Dechant, R. and Glotzer, M.: Centrosome Separation and Central Spindle Assembly Act in Redundant Pathways that Regulate Microtubule Density and Trigger Cleavage Furrow Formation, Dev. Cell 4 (2003), 333–344.Google Scholar
  13. 13.
    DeKepper, P., Castets, V., Dulos, E. and Boissonade, J.: Turing-Type Chemical Patterns in the Chlorite-Iodide-Malonic Acid Reaction, Physica D 49 (1991), 161–169.Google Scholar
  14. 14.
    Desay, A. and Mitchison, T.J.: Microtubule Polymerization Dynamics, Annu. Rev. Cell Dev. Biol. 13 (1997), 83–117.Google Scholar
  15. 15.
    Ebersbach, G. and Gerdes, K.: The Double par Locus of Virulence Factor p{B}171: DNA Segregation is Correlated with Oscillation of ParA, Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 15078–15083.Google Scholar
  16. 16.
    Erickson, H.P.: Evolution in Bacteria, Nature 413 (2001), 30.Google Scholar
  17. 17.
    Gard, D.V. and Kirschner, M.W.: Microtubule Assembly in Cytoplasmic Extracts of Xenopus Oocytes and Eggs, J. Cell Biol. 105 (1987), 2191–2201.Google Scholar
  18. 18.
    Gital, Z. and Shapiro, L.: Bacterial Cell Division Spirals into Control, Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 7423–7424.Google Scholar
  19. 19.
    Guyader, H.L. and Hyver, C.: Periodic Activity of the Cortical Cytoskeleton of the Lymphoblast: Modelling by a Reaction–Diffusion System, C. R. Acad. Sci. Life Sci. 320 (1997), 59–65.Google Scholar
  20. 20.
    Hale, C.A., Meinhardt, H. and deBoer, P.A.J.: Dynamical Localization Cycle of the Cell Division Regulator MinE in Eschericia coli, EMBO J. 20 (2001), 1563–1572.Google Scholar
  21. 21.
    Hartman, J.J. and Vale, R.D.: Microtubule Disassembly by ATP-Dependant Oligomerization of the AAA Enzyme Katanin, Science 286 (1999), 782–785.Google Scholar
  22. 22.
    Howard, J. and Hyman, A.A.: Dynamics and Mechanics of the Microtubule Plus End, Nature 422 (2003), 753–758.Google Scholar
  23. 23.
    Howard, M. and Rutenberg, A.D.: Pattern Formation inside Bacteria: Fluctuations due to the Low Copy Number of Proteins, Phys. Rev. Lett. 90(128102) (2003), 1–4.Google Scholar
  24. 24.
    Howard, W.D. and Timasheff, S.N.: GDP State of Tubulin: Stabilization of Double Rings, Biochemistry 25 (1986), 8292–8300.Google Scholar
  25. 25.
    Hu, Z. and Lutkenhaus, J.: Topological Regulation of Cell Division in Eschericia coli Involves Rapid Pole to Pole Oscillation of the Division Inhibitor {M}in{C} Under the Control of MinD and MinE, Mol. Microbiol. 34 (1999), 82–90.Google Scholar
  26. 26.
    Hunding, A.: Dissipative Structures in Reaction–Diffusion Systems: Numerical Determination of Bifurcations in the Sphere, J. Chem. Phys. 72 (1980), 5241–5248.Google Scholar
  27. 27.
    Hunding, A.: Spontaneous Biological Pattern Formation in the Three-dimensional Sphere. Prepatterns in Mitosis and Cytokinesis, in H. Haken (ed.) Evolution of Order and Chaos in Physics, Chemistry and Biology. Vol. 17: Springer Series on Synergetics, Springer, Berlin Heidelberg, 1982, pp. 100–111.Google Scholar
  28. 28.
    Hunding, A.: Bifurcations of Nonlinear Reaction–Diffusion Systems in Prolate Spheroids, J. Math. Biol. 17 (1983), 223–239.Google Scholar
  29. 29.
    Hunding, A., Ebersbach, G. and Gerdes, K.: A Mechanism for ParB-Dependent Waves of ParA, a Protein Related to DNA Segregation During Cell Division in Prokaryotes, J. Mol. Biol. 329 (2003), 35–43.Google Scholar
  30. 30.
    Hunding, A. and Engelhardt, R.: Early Biological Morphogenesis and Nonlinear Dynamics, J. Theor. Biol. 173 (1995), 401–413.Google Scholar
  31. 31.
    Hunter, A.W., Caplow, M., Coy, D.L., Hancock, W.O., Diez, S., Wordeman, L. and Howard, J.: The Kinesin-Related Protein {MCAK} is a Microtubule Depolymerase that Forms an {ATP}-Hydrolyzing Complex at Microtubule Ends, Mol. Cell 11 (2003), 445–457.Google Scholar
  32. 32.
    Hyman, A.A.: Centrosomes: Sic transit gloria centri, Curr. Biol. 10 (2000), R276–R278.Google Scholar
  33. 33.
    Job, D., Valiron, O. and Oakley, B.: Microtubule Nucleation, Curr. Opin. Cell Biol. 15 (2003), 111–117.Google Scholar
  34. 34.
    Jobs, E., Wolf, D.E. and Flyvbjerg, H.: Modeling Microtubule Oscillations, Phys. Rev. Lett. 79 (1997), 519–522.Google Scholar
  35. 35.
    Jones, L.J.F., Carbadillo-López, R. and Errington, J.: Control of Cell Shape in Bacteria: Helical, Actin-Like Filaments in Bacillus subtilis, Cell 104 (2001), 913–922.Google Scholar
  36. 36.
    Karsenti, E. and Vernon, I.: The Mitotic Spindle: A Self-Made Machine, Science 294 (2001), 543–547.Google Scholar
  37. 37.
    Khodjakov, A., Cole, R.W., Oakley, B.E. and Rieder, C.L.: Centrosome-Independent Mitotic Spindle Formation in Vertebrates, Curr. Biol. 10 (2000), 59–67.Google Scholar
  38. 38.
    Kinoshita, K., Arnal, I., Desai, A., Dreschel, D.N. and Hyman, A.A.: Reconstitution of Physiological Microtubule Dynamics Using Purified Components, Science 294 (2001), 1340–1343.Google Scholar
  39. 39.
    Kinoshita, K., Arnal, I., Desai, A., Dreschel, D.N. and Hyman, A.A.: Reconstitution of Physiological Microtubule Dynamics Using Purified Components, Science 294 (2001), 1340-1343.Google Scholar
  40. 40.
    Lupas, A.N. and Martin, J.: AAA Proteins, Curr. Opin. Struct. Biol. 12 (2002), 746–753.Google Scholar
  41. 41.
    Mandelkow, E., Mandelkow, E.-M., Hotani, H., Hess, B. and Müller, S.C.: Spatial Patterns from Oscillating Microtubules, Science 246 (1989), 1291–1293.Google Scholar
  42. 42.
    Mandelkow, E.-M. and Mandelkow, E.: Microtubule Oscillations, Cell Motil. Cytoskel. 22 (1992), 235–244.Google Scholar
  43. 43.
    Mandelkow, E.-M., Mandelkow, E. and Milligan, R.A.: Microtubule Dynamics and Microtubule Caps: A Time-Resolved Cryo-Electron Microscopy Study, J. Cell Biol. 114 (1991), 977–991.Google Scholar
  44. 44.
    Marston, A.L. and Errington, J.: Dynamic Movement of the ParA-like Soj Protein of B. subtilis and its Dual Role in Nucleoid Organization and Developmental Regulation, Mol. Cell 4 (1999), 673–682.Google Scholar
  45. 45.
    Marx, A. and Mandelkow, E.: A Model of Microtubule Oscillations, Eur. Biophys. J. 22 (1994), 405–421.Google Scholar
  46. 46.
    Meinhardt, H.: The Algorithmic Beauty of Sea Shells, Springer, Berlin Heidelberg, 1995.Google Scholar
  47. 47.
    Meinhardt, H.: The Algorithmic Beauty of Sea Shells, Springer, Berlin Heidelberg, 1995.Google Scholar
  48. 48.
    Melki, R., Carlier, M.-F., Pantaloni, D. and Timasheff, S.N.: Cold Depolymerization of Microtubules to Double Rings: Geometric Stabilization of Assemblies, Biochemistry 28 (1989), 9143–9152.Google Scholar
  49. 49.
    Mitchison, T.J. and Kirshner, M.W.: Dynamic Instability of Microtubule Growth, Nature 312 (1984), 237–242.Google Scholar
  50. 50.
    Mitchison, T.J. and Salmon, E.D.: Mitosis: A History of Division, Nature Cell Biol. 3 (2001), E17–E21.Google Scholar
  51. 51.
    Mitchison, T.J. and Salmon, E.D.: Mitosis: A History of Division, Nature Cell Biol. 3 (2001), E17–E21.Google Scholar
  52. 52.
    Moores, C.A., Yu, M., Guo, J., Beraud, C., Sakowicz, R. and Milligan, R.A.: A Mechanism for Microtubule Depolymerization by {K}in{I} Kinesins, Mol. Cell 9 (2002), 903–909.Google Scholar
  53. 53.
    Narumia, S. and Mabuchi, I.: Spinning Actin to Divide, Nature 419 (2002), 27–28.Google Scholar
  54. 54.
    Nicolis, G., Prigogine, I. 1977Self-Organization in Nonequilibrium SystemsWileyNew YorkGoogle Scholar
  55. 55.
    Nicolis, G. and Prigogine, I.: Self-Organization in Nonequilibrium Systems. New York: Wiley, 1977.Google Scholar
  56. 56.
    Ogura, T. and Wilkinson, A.J.: AAA+ Superfamily ATPases: Common Structure-Diverse Function, Genes Cell 6 (2001), 575–597.Google Scholar
  57. 57.
    Panda, D., Miller, H.P. and Wilson, L.: Determination of the Size and Chemical Nature of the Stabilizing “Cap’’ at Microtubule Ends Using Modulators of Polymerization Dynamics, Biochemistry 41 (2002), 1609–1617.Google Scholar
  58. 58.
    Pelham, R.J. and Chang, F.: Actin Dynamics in the Contractile Ring During Cytokinesis in Fission Yeast, Nature 419 (2002), 82–86.Google Scholar
  59. 59.
    Pirollet, F., Job, D., Margolis, R.L. and Garel, J.: An Oscillatory Mode for Microtubule Assembly, EMBO J. 6 (1987), 3247–3252.Google Scholar
  60. 60.
    Pletjushkina, O.J., Rajfur, Z., Pomorski, P., Oliver, T.N., Vasiliev, J.M. and Jacobson, K.A.: Induction of Cortical Oscillations in Spreading Cells by Depolymerization of Microtubules, Cell Motil. Cytoskel. 48 (2001), 235–244.Google Scholar
  61. 61.
    Portet, S., Tuszynski, J.A., Dixon, J.M. and Sataric, M.V.: Models of Spatial and Orientational Self-Organization of Microtubules Under the Influence of Gravitational Fields, Phys. Rev. E 68(021903) (2003), 1–9.Google Scholar
  62. 62.
    Quarmby, L.: Cellular Samurai: Katanin and the Severing of Microtubules, J. Cell Sci. 113 (2000), 2821–2827.Google Scholar
  63. 63.
    Quisel, J.D., Lin, D.C.-H. and Grossman, A.D.: Control of Development by Altered Localization of a Transcription Factor in B. subtilis, Mol. Cell 4 (1999), 665–672.Google Scholar
  64. 64.
    Raskin, D.M. and de Boer, P.A.J.: Rapid Pole-to-Pole Oscillation of a Protein Required for Directing Division to the Middle of Eschericia coli, Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 4971–4976.Google Scholar
  65. 65.
    Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M. and Waterman-Storer, C.M.: Conserved Microtubule-Actin Interactions in Cell Movement and Morphogenesis, Nature Cell Biol. 5 (2003), 599–609.Google Scholar
  66. 66.
    Rudovics, B., Dulos, E. and DeKepper, P.: Standard and Nonstandard Turing Patterns and Waves in the CIMA Reaction, Physica Scripta T67 (1996), 43–50.Google Scholar
  67. 67.
    Rusan, N.M., Fagerstrom, C.F., Yvon, A.-M.C. and Wadsworth, P.: Cell Cycle-Dependent Changes in Microtubule Dynamics in Living Cells Expressing Green Fluorescent Protein-α Tubulin, Mol. Biol. Cell 12 (2001), 971–980.Google Scholar
  68. 68.
    Salmon, E.D., Saxton, W.M., Leslie, R.J., Karow, M.L. and McIntosh, J.R.: Diffusion Coefficient of Fluorescein-Labeled Tubulin in the Cytoplasm of Embryonic Cells of a Sea Urchin: Video Image Analysis of Fluorescence Redistribution after Photobleaching, J. Cell Biol. 99 (1984), 2157–2164.Google Scholar
  69. 69.
    Scheffers, D.-J. and Driessen, A.J.M.: The Polymerization Mechanism of the Bacterial Cell Division Protein FtsZ, FEBS lett. 506 (2001), 6–10.Google Scholar
  70. 70.
    Sel’kov, E.E.: Self-Oscillations in Glycolysis, Eur. J. Biochem. 4 (1968), 79–86.Google Scholar
  71. 71.
    Sept, D.: Model for Spatial Microtubule Oscillations, Phys. Rev. E 60 (1999), 838–841.Google Scholar
  72. 72.
    Sept, D., Limbach, H.J., Bolterauer, H., and Tuszynski, J.A.: A Chemical Kinetics Model for Microtubule Oscillations, J. Theor. Biol. 197 (1999), 77–88.Google Scholar
  73. 73.
    Sept, D. and Tuszynski, J.A.: A Landau-Ginsburg Model of the Co-existence of Free Tubulin and Assembled Microtubules in Nucleation and Oscillations Phenomena, J. Biol. Phys. 26 (2000), 5–15.Google Scholar
  74. 74.
    Shih, Y.-L., Le, T. and Rothfield, L.: Division Site Selection in Escherichia coli Involves Dynamic Redistribution of Min Proteins within Coiled Structures that Extend Between the Two Cell Poles, Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 7865–7870.Google Scholar
  75. 75.
    Tabony, J.: Morphological Bifurcations Involving Reaction–Diffusion Processes During Microtubule Formation, Science 264 (1994), 245–248.Google Scholar
  76. 76.
    Tabony, J., Glade, N., Demongeot, J. and Papaseit, C.: Biological Self-Organization by Way of Microtubule Reaction–Diffusion Processes, Langmuir 18 (2002), 7196–7207.Google Scholar
  77. 77.
    Tabony, J. and Job, D.: Spatial Structures in Microtubular Solutions Requiring a Sustained Energy Source, Nature 346 (1990), 448–451.Google Scholar
  78. 78.
    Tran, P.T., Joshi, P. and Salmon, E.D.: How Tubulin Subunits are Lost from the Shortening Ends of Microtubules, J. Struct. Biol. 118 (1997), 107–118.Google Scholar
  79. 79.
    Turing, A.M.: The Chemical Basis of Morphogenesis, Phil. Trans. Roy. Soc. London, Ser. B 237 (1952), 37–255.Google Scholar
  80. 80.
    Vale, R.D.: AAA Proteins: Lords of the Ring, J. Cell Biol. 150 (2000), F13–F19.Google Scholar
  81. 81.
    Valiron, O., Caudron, N. and Job, D.: Microtubule Dynamics, Cell. Mol. Life Sci. 58 (2001), 2069–2084.Google Scholar
  82. 82.
    van den Ent, F., Amos, L.A. and Löwe, J.: Prokaryotic Origin of the Actin Cytoskeleton, Nature 413 (2001), 39–44.Google Scholar
  83. 83.
    Vandecandelaere, A., Martin, S.R. and Bayley, P.M.: Regulation of Microtubule Dynamic Instability by Tubulin-GDP, Biochemistry 34 (1995), 1332–1343.Google Scholar
  84. 84.
    Walczak, C.E.: Microtubule Dynamics and Tubulin Interacting Proteins, Curr. Opin. Cell Biol. 12 (2000), 52–56.Google Scholar
  85. 85.
    Wang, Y.L.: The Mechanism of Cytokinesis: Reconsideration and Reconciliation, Cell Struct. Func. 26 (2001), 633–638.Google Scholar
  86. 86.
    Watts, N.R., Sackett, D.L., Ward, R.D., Miller, M.W., Wingfield, P.T., Stahl, S.S. and Steven, A.C.: HIV-1 Rev Depolymerizes Microtubules to Form Stable Bilayered Rings, J. Cell Biol. 150 (2000), 349–360.Google Scholar
  87. 87.
    Wilson, L., Panda, D. and Jordan, M.A.: Modulation of Microtubule Dynamics by Drugs: A Paradigm for the Action of Cellular Regulators, Cell Struct. Func. 24 (1999), 329–335.Google Scholar
  88. 88.
    Zhou, B.-B. and Kirschner, M.W.: Quantitative Measurements of the Catastrophe Rate of Dynamic Microtubules, Cell Motil. Cytoskel. 43 (1999), 43–51.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Chemistry Laboratory III, Department of Chemistry C116, H. C. Ørsted InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations