Journal of Biological Physics

, Volume 30, Issue 4, pp 305–312 | Cite as

Autosomal Similarity Revealed by Eukaryotic Genomic Comparison

  • Zhen Qi
  • Yan Cui
  • Weiwu Fang
  • Lunjiang Ling
  • Runsheng Chen


To describe eukaryotic autosomes quantitatively and determine differences between them in terms of amino acid sequences of genes, functional classification of proteins, and complete DNA sequences, we applied two theoretical methods, the Proteome-vector method and the function of degree of disagreement (FDOD) method, that are based on function and sequence similarity respectively, to autosomes from nine eukaryotes. No matter what aspect of the autosome is considered, the autosomal differences within each organism were less than that between species. Our results show that eukaryotic autosomes resemble each other within a species while those from different organisms differ. We propose a hypothesis (named intra-species autosomal random shuffling) as an explanation for our results and suggest that lateral gene transfer (LGT) did not occur frequently during the evolution of eukarya.

Key words

autosomal similarity Proteome-vector FDOD shuffling genomic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J. and Sutton, G.G.: The Sequence of the Human Genome, Science 291 (2001), 1304–1351.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang, M.Q.: Computational Prediction of Eukaryotic Protein-Coding Genes, Nat. Rev. Genet. 3 (2002), 698–709.Google Scholar
  3. 3.
    Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. and Yeates, T.O.: Assigning Protein Functions by Comparative Genome Analysis: Protein Phylogenetic Profiles, Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 4285–4288.Google Scholar
  4. 4.
    Pennacchio, L.A. and Rubin, E.M.: Genomic Strategies to Identify Mammalian Regulatory Sequences, Nat. Rev. Genet. 2 (2001), 100–109.Google Scholar
  5. 5.
    Belle, E.M., Smith, N. and Eyre-Walker, A.: Analysis of the Phylogenetic Distribution of Isochores in Vertebrates and a Test of the Thermal Stability Hypothesis, J. Mol. Evol. 55 (2002), 356–363.Google Scholar
  6. 6.
    Bernardi, G.: Isochores and the Evolutionary Genomics of Vertebrates, Gene 241 (2000), 3–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Sankoff, D.: Rearrangements and Chromosomal Evolution, Curr. Opin. Genet. Dev. 13 (2003), 583–587.Google Scholar
  8. 8.
    Sankoff, D. and Nadeau, J.H.: Chromosome Rearrangements in Evolution: From Gene Order to Genome Sequence and Back, Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 11188–11189.Google Scholar
  9. 9.
    Stuart, G.W., Moffett, K. and Leader, J.J.: A Comprehensive Vertebrate Phylogeny Using Vector Representations of Protein Sequences from Whole Genomes, Mol. Biol. Evol. 19 (2002), 554–562.Google Scholar
  10. 10.
    Lin, J. and Gerstein, M.: Whole-Genome Trees Based on the Occurrence of Folds and Orthologs: Implications for Comparing Genomes on Different Levels, Genome Res. 10 (2000), 808–818.Google Scholar
  11. 11.
    Ling, L., Wang, J., Cui, Y., Hi, W. and Chen, R.: Proteome-Wide Analysis of Protein Function Composition Reveals the Clustering and Phylogenetic Properties of Organisms, Mol. Phylogenet. Evol. 25 (2002), 101–111.Google Scholar
  12. 12.
    Fang, W.: The Disagreement Degree of Multi-Person Judgments in Additive Structure, Math. Soc. Sci. 25 (1994), 85–111.Google Scholar
  13. 13.
    Fang, W.: On a Global Optimization Problem in the Study of Information Discrepancy, J. Global Optim. 11 (1997), 387–408.Google Scholar
  14. 14.
    Tatusov, R.L., Koonin, E.V. and Lipman, D.J.: A Genomic Perspective on Protein Families, Science 278 (1997), 631–637.CrossRefGoogle Scholar
  15. 15.
    Pearson, W.R. and Lipman, D.J.: Improved Tools for Biological Sequence Comparison, Proc. Natl. Acad. Sci. U.S.A. 85 (1988), 2444–2448.Google Scholar
  16. 16.
    Hogenesch, J.B., Ching, K.A., Batalov, S., Su, A.I., Walker, J.R. and Zhou, Y.: A Comparison of the Celera and Ensembl Predicted Gene Sets Reveals Little Overlap in Novel Genes, Cell 106 (2001), 413–415.Google Scholar
  17. 17.
    Gatesy, J., Desalle, R. and Wheeler, W.: Alignment-Ambiguous Nucleotide Sites and the Exclusion of Systematic Data, Mol. Phylogenet. Evol. 2 (1993), 152–157.Google Scholar
  18. 18.
    Wheeler, W.C., Gatesy, J. and Desalle, R.: Elision: A Method for Accommodating Multiple Molecular Sequence Alignments with Alignment-Ambiguous Sites, Mol. Phylogenet. Evol. 4 (1995), 1–9.Google Scholar
  19. 19.
    Fischer, G., James, S.A., Roberts, I.N., Oliver, S.G. and Louis, E.J.: Chromosomal Evolution in Saccharomyces, Nature 405 (2000), 451–454.CrossRefGoogle Scholar
  20. 20.
    Ejima, Y. and Yang, L.: Trans Mobilization of Genomic DNA as a Mechanism for Retrotransposon-Mediated Exon Shuffling, Hum. Mol. Genet. 12 (2003), 1321–1328.Google Scholar
  21. 21.
    Zdobnov, E.M., von Mering, C., Letunic, I., Torrents, D., Suyama, M. and Copley, R.R.: Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster, Science 298 (2002), 149–159.CrossRefGoogle Scholar
  22. 22.
    Gilbert, W.: Why Genes in Pieces?, Nature 271 (1978), 501.PubMedGoogle Scholar
  23. 23.
    Gilbert, W.: Why Genes in Pieces?, Nature 271 (1978), 501.Google Scholar
  24. 24.
    Wolfe, K.H. and Shields, D.C.: Molecular Evidence for an Ancient Duplication of the Entire Yeast Genome, Nature 387 (1997), 708–713.CrossRefPubMedGoogle Scholar
  25. 25.
    Garcia-Vallve, S., Romeu, A. and Palau, J.: Horizontal Gene Transfer in Bacterial and Archaeal Complete Genomes, Genome Res. 10 (2000), 1719–1725.Google Scholar
  26. 26.
    Kumar, S. and Subramanian, S.: Mutation Rates in Mammalian Genomes, Proc. Natl. Acad. Sci._U.S.A. 99 (2002), 803–808.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Center of Genomics and BioinformaticsUniversity of TennesseeMemphisUSA
  3. 3.Institute of MathematicsChinese Academy of SciencesBeijingChina

Personalised recommendations