Time to selected quit date and subsequent rates of sustained smoking abstinence

  • George L. Anesi
  • Scott D. Halpern
  • Michael O. Harhay
  • Kevin G. Volpp
  • Kathryn Saulsgiver
Article

Abstract

In efforts to combat tobacco dependence, most smoking cessation programs offer individuals who smoke the choice of a target quit date. However, it is uncertain whether the time to the selected quit date is associated with participants’ chances of achieving sustained abstinence. In a pre-specified secondary analysis of a randomized clinical trial of four financial-incentive programs or usual care to encourage smoking cessation (Halpern et al. in N Engl J Med 372(22):2108–2117, doi:10.1056/NEJMoa1414293, 2015), study participants were instructed to select a quit date between 0 and 90 days from enrollment. Among those who selected a quit date and provided complete baseline data (n = 1848), we used multivariable logistic regression to evaluate the association of the time to the selected quit date with 6- and 12-month biochemically-confirmed abstinence rates. In the fully adjusted model, the probability of being abstinent at 6 months if the participant selected a quit date in weeks 1, 5, 10, and 13 were 39.6, 22.6, 10.9, and 4.3%, respectively.

Keywords

Tobacco dependence Smoking cessation Quit date Sustained abstinence Stage-of-change Readiness-to-quit 

Supplementary material

10865_2017_9868_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 64 kb)

References

  1. Alessi, S. M., & Petry, N. M. (2014). Smoking reductions and increased self-efficacy in a randomized controlled trial of smoking abstinence–contingent incentives in residential substance abuse treatment patients. Nicotine & Tobacco Research, 16, 1436–1445. doi:10.1093/ntr/ntu095 CrossRefGoogle Scholar
  2. Brown, C. H., Ten Have, T. R., Jo, B., Dagne, G., Wyman, P. A., Muthen, B., et al. (2009). Adaptive designs for randomized trials in public health. Annual Review of Public Health, 30, 1–25. doi:10.1146/annurev.publhealth.031308.100223 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Danaei, G., Ding, E. L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C. J. L., et al. (2009). The preventable causes of death in the United States: Comparative risk assessment of dietary, lifestyle, and metabolic risk factors. Plos Medicine, 6, e1000058. doi:10.1371/journal.pmed.1000058 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dragalin, V. (2006). Adaptive designs: Terminology and classification. Drug Information Journal, 40, 425–435.Google Scholar
  5. French, B., Small, D. S., Novak, J., Saulsgiver, K. A., Harhay, M. O., Asch, D. A., et al. (2015). Preference-adaptive randomization in comparative effectiveness studies. Trials, 16, 99. doi:10.1186/s13063-015-0592-6 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Halpern, S. D., French, B., Small, D. S., Saulsgiver, K., Harhay, M. O., Audrain-McGovern, J., et al. (2015). Randomized trial of four financial-incentive programs for smoking cessation. New England Journal of Medicine, 372, 2108–2117. doi:10.1056/NEJMoa1414293 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Halpern, S. D., French, B., Small, D. S., Saulsgiver, K., Harhay, M. O., Audrain-McGovern, J., et al. (2016). Heterogeneity in the effects of reward- and deposit-based financial incentives on smoking cessation. American Journal of Respiratory and Critical Care Medicine, 194, 981–988. doi:10.1164/rccm.201601-0108OC CrossRefPubMedGoogle Scholar
  8. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36. doi:10.1148/radiology.143.1.7063747 CrossRefPubMedGoogle Scholar
  9. Hu, F. F., Zhang, L. X., & He, X. M. (2009). Efficient randomized-adaptive designs. Annals of Statistics, 37, 2543–2560. doi:10.1214/08-Aos655 CrossRefGoogle Scholar
  10. Hughes, J. R., Keely, J. P., Niaura, R. S., Ossip-Klein, D. J., Richmond, R. L., & Swan, G. E. (2003). Measures of abstinence in clinical trials: Issues and recommendations. Nicotine & Tobacco Research, 5, 13–25.CrossRefGoogle Scholar
  11. Jacob, P., Hatsukami, D., Severson, H., Hall, S., Yu, L., & Benowitz, N. L. (2002). Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidemiology, Biomarkers and Prevention, 11, 1668–1673.PubMedGoogle Scholar
  12. Jamal, A., King, B. A., Neff, L. J., Whitmill, J., Babb, S. D., & Graffunder, C. M. (2016). Centers for disease control and prevention. Current cigarette smoking among adults—United States, 2005–2015. Morbidity and Mortality Weekly Report, 65, 1205–1211.CrossRefPubMedGoogle Scholar
  13. Kirby, K. N. (1997). Bidding on the future: Evidence against normative discounting of delayed rewards. Journal of Experimental Psychology-General, 126, 54–70. doi:10.1037/0096-3445.126.1.54 CrossRefGoogle Scholar
  14. Larabie, L. C. (2005). To what extent do smokers plan quit attempts? Tobacco Control, 14, 425–428. doi:10.1136/tc.2005.013615 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lindson-Hawley, N., Banting, M., West, R., Michie, S., Shinkins, B., & Aveyard, P. (2016). Gradual versus abrupt smoking cessation: A randomized, controlled noninferiority trial. Annals of Internal Medicine, 164, 585–592. doi:10.7326/M14-2805 CrossRefPubMedGoogle Scholar
  16. Pankova, A., Kralikova, E., Stepankova, L., Zvolska, K., Bortlicek, Z., Blaha, M., et al. (2016). Weight concerns associated with delay in quit date but not treatment outcomes: A Czech Republic experience. Nicotine & Tobacco Research. doi:10.1093/ntr/ntw276 Google Scholar
  17. Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12, 38–48.CrossRefPubMedGoogle Scholar
  18. Rostron, B. L., Chang, C. M., & Pechacek, T. F. (2014). Estimation of cigarette smoking-attributable morbidity in the United States. JAMA Internal Medicine, 174, 1922–1928. doi:10.1001/jamainternmed.2014.5219 CrossRefPubMedGoogle Scholar
  19. Society for Research on Nicotine and Tobacco Subcommittee on Biochemical Verification. (2002). Biochemical verification of tobacco use and cessation. Nicotine & Tobacco Research, 4, 149–159. doi:10.1080/14622200210123581 CrossRefGoogle Scholar
  20. U.S. Department of Health and Human Services. (2016). E-cigarette use among youth and young adults. A report of the surgeon general. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
  21. Vangeli, E., Stapleton, J., Smit, E. S., Borland, R., & West, R. (2011). Predictors of attempts to stop smoking and their success in adult general population samples: A systematic review. Addiction, 106, 2110–2121. doi:10.1111/j.1360-0443.2011.03565.x CrossRefPubMedGoogle Scholar
  22. West, R., & Sohal, T. (2006). “Catastrophic” pathways to smoking cessation: Findings from national survey. BMJ, 332, 458–460. doi:10.1136/bmj.38723.573866.AE CrossRefPubMedPubMedCentralGoogle Scholar
  23. Westman, E. C., Behm, F. M., Simel, D. L., & Rose, J. E. (1997). Smoking behavior on the first day of a quit attempt predicts long-term abstinence. Archives of Internal Medicine, 157, 335–340.CrossRefPubMedGoogle Scholar
  24. Zhu, S. H., Lee, M., Zhuang, Y. L., Gamst, A., & Wolfson, T. (2012). Interventions to increase smoking cessation at the population level: How much progress has been made in the last two decades? Tobacco Control, 21, 110–118. doi:10.1136/tobaccocontrol-2011-050371 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • George L. Anesi
    • 1
    • 2
    • 3
  • Scott D. Halpern
    • 1
    • 2
    • 3
    • 4
  • Michael O. Harhay
    • 2
    • 3
    • 5
  • Kevin G. Volpp
    • 3
    • 4
    • 5
    • 6
  • Kathryn Saulsgiver
    • 2
    • 3
  1. 1.Division of Pulmonary, Allergy, and Critical CareHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Leonard Davis Institute of Health EconomicsUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  5. 5.Center for Health Equity Research and PromotionPhiladelphia Veterans Affairs Medical CenterPhiladelphiaUSA
  6. 6.Department of Health Care Management, Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations