Journal of Behavioral Medicine

, Volume 40, Issue 4, pp 641–650 | Cite as

Icons for health effects of cigarette smoke: a test of semiotic type

  • Allison J. Lazard
  • Annie Schmidt
  • Huyen Vu
  • M.  Justin Byron
  • Ellen Peters
  • Marcella H. Boynton
  • Noel T. Brewer


We sought to identify icons to effectively communicate health harms of chemicals in cigarette smoke. Participants were a convenience sample of 701 U.S. adults. A within-subjects online experiment explored the effects of icon semiotic type: symbolic (arbitrary, most abstract), indexical, and iconic (representative, most concrete). Outcomes were perceived representation, affect toward smoking, elaboration, perceived severity, and perceived effectiveness. For not-easy-to-visualize harms of cancer and addiction, symbolic icons received the highest ratings (all p < .001). For easy-to-visualize symptoms of heart attack/stroke, indexical icons received the highest ratings (all p < .001). For easy-to-visualize harm of reproductive organ damage, the iconic image did best (all p < .001). Icon type often had a larger impact among participants with higher health literacy. Symbolic icons may be most effective for health effects not easily visualized. Iconic or indexical icons may be more effective for health effects attributable to specific body parts or symptoms.


Icons Pictograph Warning Cigarette Health effects 


  1. Andrews, J. C., Netemeyer, R. G., Kees, J., & Burton, S. (2014). How graphic visual health earnings affect young smokers’ thoughts of quitting. Journal of Marketing Research, 51, 165–183.CrossRefGoogle Scholar
  2. Baig, S. A., Noar, S. M., Ribisl, K. M., & Brewer, N. T. (2017). UNC perceived effectiveness scale: Psychometric properties among a large sample of adult smokers and non-smokers (Working paper)Google Scholar
  3. Baker, R. R., Massey, E. D., & Smith, G. (2004). An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food and Chemical Toxicology, 42, 53–83. doi:10.1016/j.fct.2004.01.001 CrossRefGoogle Scholar
  4. Baker, D., Williams, M., Parker, R., Gazmarian, J., & Nurss, J. (1999). Development of a brief test to measure functional health literacy. Patient Education and Counseling, 38, 33–42.CrossRefPubMedGoogle Scholar
  5. Boynton, M. H., Agans, R. P., Bowling, J. M., Brewer, N. T., Sutfin, E. L., Goldstein, A. O., et al. (2016). Understanding how perceptions of tobacco constituents and the FDA relate to effective and credible tobacco risk messaging: A national phone survey of U.S. adults, 2014–2015. BMC Public Health, 16, 1–13. doi:10.1186/s12889-016-3151-5 CrossRefGoogle Scholar
  6. Brewer, N. T., Gottlieb, S. L., Reiter, P. L., McRee, A.-L., Liddon, N., Markowitz, L., et al. (2011). Longitudinal predictors of HPV vaccine initiation among adolescent girls in a high-risk geographic area. Sexually Transmitted Diseases, 38, 197.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brewer, N. T., Hall, M. G., Noar, S. M., Parada, H., Stein-Seroussi, A., Bach, L. E., et al. (2016). Effect of pictorial cigarette pack warnings on changes in smoking behavior: A randomized clinical trial. JAMA Internal Medicine, 176, 905–912. doi:10.1001/jamainternmed.2016.2621 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk a new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6, 3–5.CrossRefPubMedGoogle Scholar
  9. Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via Amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29, 2156–2160.CrossRefGoogle Scholar
  10. Center for Disease Control and Prevention. (2016). Fact sheets: Smoking and tobacco use. Retrieved from
  11. Centers for Disease Control and Prevention. (2013). Behavioral risk factor surveillance system questionnaire. Retrieved from
  12. 111th Congress of the United States of America. Family Smoking Prevention and Tobacco Control Act, Public Law 111–31, 123 Statute 1776. June 22, 2009.Google Scholar
  13. Evans, A. T., Peters, E., Strasser, A. A., Emery, L. F., Sheerin, K. M., & Romer, D. (2015). Graphic warning labels elicit affective and thoughtful responses from smokers: Results of a randomized clinical trial. PLoS ONE, 10, e0142879. doi:10.1371/journal.pone.0142879 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fathelrahman, A. I., Omar, M., Awang, R., Cummings, K. M., Borland, R., & Samin, A. S. B. M. (2010). Impact of the new Malaysian cigarette pack warnings on smokers’ awareness of health risks and interest in quitting smoking. International Journal of Environmental Research and Public Health, 7, 4089–4099. doi:10.3390/ijerph7114089 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fowles, J., & Dybing, E. (2003). Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tobacco Control, 12, 424–430.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Garcia-Retamero, R., & Galesic, M. (2010). Who proficts from visual aids: Overcoming challenges in people’s understanding of risks. Social Science and Medicine, 70, 1019–1025. doi:10.1016/j.socscimed.2009.11.031 CrossRefPubMedGoogle Scholar
  17. Green, M. J., & Myers, K. R. (2010). Graphic medicine: Use of comics in medical education and patient care. British Medical Journal, 340, 574–577.CrossRefGoogle Scholar
  18. Hall, M. G., Ribisl, K. M., & Brewer, N. T. (2014). Smokers’ and nonsmokers’ beliefs about harmful tobacco constituents: Implications for FDA communication efforts. Nicotine & Tobacco Research, 16, 343–350. doi:10.1093/ntr/ntt158 CrossRefGoogle Scholar
  19. Hecht, S. S. (2012). Research opportunities related to establishing standards for tobacco products under the Family Smoking Prevention and Tobacco Control Act. Nicotine & Tobacco Research, 14, 18–28. doi:10.1093/ntr/ntq216 CrossRefGoogle Scholar
  20. Hoffmann, D., & Hoffmann, I. (2001). The changing cigarette: Chemical studies and bioassays. Smoking and Tobacco Control Monograph, 13, 159–192.Google Scholar
  21. Houts, P. S., Doak, C. C., Doak, L. G., & Loscalzo, M. J. (2006). The role of pictures in improving health communication: A review of research on attention, comprehension, recall, and adherence. Patient Education and Counseling, 61, 173–190. doi:10.1016/j.pec.2005.05.004 CrossRefPubMedGoogle Scholar
  22. Katz, M. G., Kripalani, S., & Weiss, B. D. (2006). Use of pictorial aids in medication instructions: A review of the literature. American Journal of Health-System Pharmacy, 63, 2391–2397.CrossRefPubMedGoogle Scholar
  23. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
  24. McCloud, S. (1993). Understanding comics: The invisible art. New York, NY: Harper Collins Publishers Inc.Google Scholar
  25. Meppelink, C. S., Smit, E. G., Buurman, B. M., & van Weert, J. C. (2015). Should we be afraid of simple messages? The effects of text difficulty and illustrations in people with low or high health literacy. Health Communication, 30, 1181–1189.CrossRefPubMedGoogle Scholar
  26. Messaris, P. (1997). Visual persuasion: The role of images in advertising. Thousand Oaks, CA: Sage.Google Scholar
  27. Moracco, K. E., Morgan, J. C., Mendel, J., Teal, R., Noar, S. M., Ribisl, K. M., et al. (2016). “My first thought was croutons”: Perceptions of cigarettes and cigarette smoke constituents among adult smokers and nonsmokers. Nicotine & Tobacco Research, 18, 1566–1574.CrossRefGoogle Scholar
  28. Moriarty, S. (2002). The symbiotics of semiotics and visual communication. Journal of Visual Literacy, 22, 19–28.CrossRefGoogle Scholar
  29. Nakamura, C., & Zeng-Treitler, Q. (2012). A taxonomy of representation strategies in iconic communication. International Journal of Human-Computer Studies, 70, 535–551.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Palmer-Wackerly, A. L., & Krieger, J. L. (2015). Dancing around infertility: The use of metaphors in a complex medical situation. Health Communication, 30, 612–623. doi:10.1080/10410236.2014.888386 CrossRefPubMedGoogle Scholar
  31. Peirce, C. S. (1991). Peirce on signs: Writing on semiotic. Chapel Hill, NC: University of North Carolina Press.Google Scholar
  32. Peters, E., Västfjäll, D., Slovic, P., Mertz, C., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological Science, 17, 407–413.CrossRefPubMedGoogle Scholar
  33. Rodgman, A., & Perfetti, T. A. (2013). The chemical components of tobacco and tobacco smoke. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  34. Sopory, P. (2005). Metaphor in formative evaluation and message design: An application to relationships and alcohol use. Health Communication, 17, 149–172.CrossRefPubMedGoogle Scholar
  35. Stevens, J. P. (2007). Intermediate statistics: A modern approach (3rd ed.). New York, NY: Routledge.Google Scholar
  36. Talhout, R., Schulz, T., Florek, E., Van Benthem, J., Wester, P., & Opperhuizen, A. (2011). Hazardous compounds in tobacco smoke. International Journal of Environ Research and Public Health, 8, 613–628. doi:10.3390/ijerph8020613 CrossRefGoogle Scholar
  37. United States Department of Health Human Services. (2014). The health consequences of smoking50 years of progress: A report of the Surgeon General. Atlanta, GA. Retrieved from
  38. United States Department of Health and Human Services. (2016). Nicotine addiction and your health. Retrieved from
  39. United States Food and Drug Administration. (2012). Harmful and potentially harmful constituents in tobacco products and tobacco smoke: Established list. Retrieved from
  40. Wayne, G. F., & Carpenter, C. M. (2009). Tobacco industry manipulation of nicotine dosing Nicotine. Psychopharmacology (Berl), 192, 457–485.Google Scholar
  41. Yu, B., Willis, M., Sun, P., & Wang, J. (2013). Crowdsourcing participatory evaluation of medical pictograms using Amazon Mechanical Turk. Journal of Medical Internet Research, 15, e108.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zikmund-Fisher, B. J., Witteman, H. O., Dickson, M., Fuhrel-Forbis, A., Kahn, V. C., Exe, N. L., et al. (2014). Blocks, ovals, or people? Icon type affects risk perceptions and recall of pictographs. Medical Decision Making, 34, 443–453. doi:10.1177/0272989X13511706 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Allison J. Lazard
    • 1
  • Annie Schmidt
    • 2
  • Huyen Vu
    • 3
  • M.  Justin Byron
    • 2
    • 3
  • Ellen Peters
    • 4
  • Marcella H. Boynton
    • 2
    • 3
  • Noel T. Brewer
    • 2
    • 3
  1. 1.School of Media and JournalismUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Health Behavior, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA
  3. 3.Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillUSA
  4. 4.Department of PsychologyThe Ohio State UniversityColumbusUSA

Personalised recommendations