Advertisement

Journal of Behavioral Medicine

, Volume 40, Issue 1, pp 99–111 | Cite as

Technology-based interventions for weight management: current randomized controlled trial evidence and future directions

  • Andrea T. Kozak
  • Joanna Buscemi
  • Misty A. W. Hawkins
  • Monica L. Wang
  • Jessica Y. Breland
  • Kathryn M. Ross
  • Anupama Kommu
Article

Abstract

Obesity is a prevalent health care issue associated with disability, premature morality, and high costs. Behavioral weight management interventions lead to clinically significant weight losses in overweight and obese individuals; however, many individuals are not able to participate in these face-to-face treatments due to limited access, cost, and/or time constraints. Technological advances such as widespread access to the Internet, increased use of smartphones, and newer behavioral self-monitoring tools have resulted in the development of a variety of eHealth weight management programs. In the present paper, a summary of the most current literature is provided along with potential solutions to methodological challenges (e.g., high attrition, minimal participant racial/ethnic diversity, heterogeneity of technology delivery modes). Dissemination and policy implications will be highlighted as future directions for the field of eHealth weight management.

Keywords

Technology-based weight management eHealth Review Recommendations Dissemination Randomized controlled trials 

Notes

Compliance with ethical standards

Conflict of interest

Andrea T. Kozak, Joanna Buscemi, Misty A.W. Hawkins, Monica L. Wang, Jessica Y. Breland, Kathryn M. Ross, and Anupama Kommu declare that they have no conflict of interest.

Human and animal rights and Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adamson, A. J., & Baranowski, T. (2014). Developing technological solutions for dietary assessment in children and young people. Journal of Human Nutrition & Dietetics, 27, 1–4. doi: 10.1111/jhn.12206 CrossRefGoogle Scholar
  2. Allen, J. K., Stephens, J., Dennison Himmelfarb, C. R., Stewart, K. J., & Hauck, S. (2013). Randomized controlled pilot study testing use of smartphone technology for obesity treatment. Journal of Obesity, 2013, 1–7. doi: 10.1155/2013/151597 CrossRefGoogle Scholar
  3. Amft, O., & Troster, G. (2008). Recognition of dietary activity events using on-body sensors. Artificial Intelligence in Medicine, 42, 121–136. doi: 10.1016/j.artmed.2007.11.007 CrossRefPubMedGoogle Scholar
  4. Archer, E., Groessl, E. J., Sui, X., McClain, A. C., Wilcox, S., Hand, G. A., et al. (2012). An economic analysis of traditional and technology-based approaches to weight loss. American Journal of Preventive Medicine, 43, 176–182. doi: 10.1016/j.amepre.2012.04.018 CrossRefPubMedGoogle Scholar
  5. Bassett, D. R., Jr., & John, D. (2013). Use of pedometers and accelerometers in clinical populations: Validity and reliability issues. Physical Therapy Reviews, 15, 135–142. doi: 10.1179/1743288X10Y.0000000004 CrossRefGoogle Scholar
  6. Bennett, G. G., Steinberg, D., Stoute, C., Lanpher, M., Lane, I., Askew, S., et al. (2014). Electronic health (eHealth) interventions for weight management among racial/ethnic minority adults: A systematic review. Obesity Reviews, 15, 146–158. doi: 10.1111/obr.12218 CrossRefPubMedGoogle Scholar
  7. Berkman, E. T., Giuliani, N. R., & Pruitt, A. K. (2014). Comparison of text messaging and paper-and-pencil for ecological momentary assessment of food craving and intake. Appetite, 81, 131–137. doi: 10.1016/j.appet.2014.06.010 CrossRefPubMedGoogle Scholar
  8. Burhansstipanov, L., & Schumacher, S. C. S. A. (2005). Lessons learned from community-based participatory research in Indian country. Cancer Control, 12, 70.PubMedPubMedCentralGoogle Scholar
  9. Burke, L. E., Ma, J., Azar, K. M., Bennett, G. G., Peterson, E. D., Zheng, Y., et al. (2015). Current science on consumer use of mobile health for cardiovascular disease prevention a scientific statement from the American Heart Association. Circulation, 132, 1157–1213. doi: 10.1161/CIR.0000000000000232 CrossRefPubMedGoogle Scholar
  10. Burke, L., Styn, M. A., Sereika, S. M., Conroy, M. B., Ye, L., Glanz, K., et al. (2012). Using mhealth technology to enhance self-monitoring for weight loss: A randomized trial. American Journal of Preventive Medicine, 43, 20–26. doi: 10.1016/j.amepre.2012.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burke, L., Wang, J., & Sevick, M. A. (2011). Self-monitoring in weight loss: A systematic review of the literature. Journal of the American Dietetic Association, 111, 92–102. doi: 10.1016/j.jada.2010.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Butryn, M. L., Webb, V., & Wadden, T. A. (2011). Behavioral treatment of obesity. Psychiatric Clinics of North America, 34, 841–859. doi: 10.1016/j.psc.2011.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cadmus-Bertram, L., Wang, J. B., Patterson, R. E., Newman, V. A., Parker, B. A., & Pierce, J. P. (2013). Web-based self-monitoring for weight loss among overweight/obese women at increased risk for breast cancer: The help pilot study. Psycho-Oncology, 22, 1821–1828. doi: 10.1002/pon.3219 CrossRefPubMedGoogle Scholar
  14. Cai, F., Yi, C., Liu, S., Wang, Y., Liu, L., Liu, X., et al. (2016). Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals. Biosensors & Bioelectronics, 77, 907–913. doi: 10.1016/j.bios.2015.10.062 CrossRefGoogle Scholar
  15. Cain, K. L., Sallis, J. F., Conway, T. L., Van Dyck, D., & Calhoon, L. (2013). Using accelerometers in youth physical activity studies: A review of methods. Journal of Physical Activity & Health, 10, 437–450.CrossRefGoogle Scholar
  16. Carter, M. C., Burley, V. J., Nykjaer, C., & Cade, J. E. (2013). Adherence to a smartphone application for weight loss compared to website and paper diary: Pilot randomized controlled trial. Journal of Medical Internet Research, 15, e32. doi: 10.2196/jmir.2283 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Castelnuovo, G., Manzoni, G. M., Pietrabissa, G., Corti, S., Giusti, E. M., Molinari, E., et al. (2014). Obesity and outpatient rehabilitation using mobile technologies: The potential mhealth approach. Frontiers in Psychology, 5, 1–7. doi: 10.3389/fpsyg.2014.00559 CrossRefGoogle Scholar
  18. Cavoukian, A., & Jonas, J. (2012). Privacy by design in the age of big data. Information and Privacy Commissioner of Ontario, Canada. Retrieved December 20, 2015 from https://www.ipc.on.ca/images/Resources/pbd-big_data.pdf
  19. Centers for Medicare and Medicaid Services. (2011). Final coverage decision memorandum for intensive behavioral therapy for obesity. Retrieved January 2, 2016 from https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?&NcaName=Intensive%20Behavioral%20Therapy%20for%20Obesity&bc=ACAAAAAAIAAA&NCAId=253
  20. Coons, M. J., Demott, A., Buscemi, J., Duncan, J. M., Pellegrini, C. A., Steglitz, J., et al. (2012). Technology interventions to curb obesity: A systematic review of the current literature. Current Cardiovascular Risk Reports, 6, 120–134. doi: 10.1007/s12170-012-0222-8 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coons, S. J., Eremenco, S., Lundy, J. J., O’Donohoe, P., O’Gorman, H., & Malizia, W. (2015). Capturing patient-reported outcome (PRO) data electronically: The past, present, and promise of ePRO measurement in clinical trials. Patient, 8, 301–309. doi: 10.1007/s40271-014-0090-z CrossRefPubMedGoogle Scholar
  22. Crane, M. M., Lutes, L. D., Ward, D. S., Bowling, J. M., & Tate, D. F. (2015). A randomized trial testing the efficacy of a novel approach to weight loss among men with overweight and obesity. Obesity, 23, 2398–2405. doi: 10.1002/oby.21265 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dennison, L., Morrison, L., Lloyd, S., Phillips, D., Stuart, B., Williams, S., et al. (2014). Does brief telephone support improve engagement with a web-based weight management intervention? Randomized controlled trial. Journal of Medical Internet Research, 16, e95. doi: 10.2196/jmir.3199 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Donaldson, E., Fallows, S., & Morris, M. (2014). A text message based weight management intervention for overweight adults. Journal of Human Nutrition & Dietetics, 27, 90–97. doi: 10.1111/jhn.12096 CrossRefGoogle Scholar
  25. Duncan, J. M., Janke, E. A., Kozak, A. T., Roehrig, M., Russell, S. W., McFadden, H. G., et al. (2011). PDA+: A personal digital assistant for obesity treatment-an RCT testing the use of technology to enhance weight loss treatment for veterans. BMC Public Health, 11, 223. doi: 10.1186/1471-2458-11-223 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ejiogu, N., Norbeck, J. H., Mason, M. A., Cromwell, B. C., Zonderman, A. B., & Evans, M. K. (2011). Recruitment and retention strategies for minority or poor clinical research participants: Lessons from the healthy aging in neighborhoods of diversity across the life span study. The Gerontologist, 51, S33–S45. doi: 10.1093/geront/gnr027 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ellis, L. A., Collin, P., Hurley, P. J., Davenport, T. A., Burns, J. M., & Hickie, I. B. (2013). Young men’s attitudes and behaviour in relation to mental health and technology: Implications for the development of online mental health services. BMC Psychiatry, 13, 119. doi: 10.1186/1471-244X-13-119 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Evans-Campbell, T. (2008). Historical trauma in American Indian/Native Alaska communities a multilevel framework for exploring impacts on individuals, families, and communities. Journal of Interpersonal Violence, 23, 316–338. doi: 10.1177/0886260507312290 CrossRefPubMedGoogle Scholar
  29. Faseru, B., Cox, L. S., Bronars, C. A., Opole, I., Reed, G. A., Mayo, M. S., et al. (2010). Design, recruitment, and retention of African-American smokers in a pharmacokinetic study. BMC Medical Research Methodology, 10, 6. doi: 10.1186/1471-2288-10-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fildes, A., Charlton, J., Rudisill, C., Littlejohns, P., Prevost, A. T., & Gulliford, M. C. (2015). Probability of an obese person attaining normal body weight: Cohort study using electronic health records. American Journal of Public Health, 105, e54–e59. doi: 10.2105/AJPH.2015.302773 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fukuoka, Y., Gay, C. L., Joiner, K. L., & Vittinghoff, E. (2015). A novel diabetes prevention intervention using a mobile app: A randomized controlled trial with overweight adults at risk. American Journal of Preventive Medicine, 49, 223–237. doi: 10.1016/j.amepre.2015.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gabriele, J. M., Carpenter, B. D., Tate, D. F., & Fisher, E. B. (2011). Directive and nondirective e-coach support for weight loss in overweight adults. Annals of Behavioral Medicine, 41, 252–263. doi: 10.1007/s12160-010-9240-2 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gold, B. C., Burke, S., Pintauro, S., Buzzell, P., & Harvey-Berino, J. (2007). Weight loss on the web: A pilot study comparing a structured behavioral intervention to a commercial program. Obesity, 15, 155. doi: 10.1038/oby.2007.520 CrossRefPubMedGoogle Scholar
  34. Graffigna, G., Barello, S., Libreri, C., & Bosio, C. A. (2014). How to engage type-2 diabetic patients in their own health management: Implications for clinical practice. BMC Public Health, 14, 648–659. doi: 10.1186/1471-2458-14-648 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gudenkauf, L. M., Antoni, M. H., Stagl, J. M., Lechner, S. C., Jutagir, D. R., Bouchard, L. C., et al. (2015). Brief cognitive–behavioral and relaxation training interventions for breast cancer: A randomized controlled trial. Journal of Consulting and Clinical Psychology, 83, 677–688. doi: 10.1037/ccp0000020 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gussenhoven, A., van Wier, M., Bosmans, J., Dekkers, J., & van Mechelen, W. (2013). Cost-effectiveness of a distance lifestyle counselling programme among overweight employees from a company perspective, ALIFE@ work: A randomized controlled trial. Work, 46, 337–346. doi: 10.3233/WOR-121555 PubMedGoogle Scholar
  37. Harris, J., Felix, L., Miners, A., Murray, E., Michie, S., Ferguson, E., et al. (2011). Adaptive e-learning to improve dietary behaviour: A systematic review and cost-effectiveness analysis. Health Technology Assessment. doi: 10.3310/hta15370 Google Scholar
  38. Hartlieb, K. B., Jacques-Tiura, A. J., Naar-King, S., Ellis, D. A., Jen, K. C., & Marshall, S. (2015). Recruitment strategies and the retention of obese urban racial/ethnic minority adolescents in clinical trials: the FIT families project, Michigan 2010–2014. Preventing Chronic Disease, 12, 1–10. doi: 10.5888/pcd12.140409 CrossRefGoogle Scholar
  39. Herring, S. J., Cruice, J. F., Bennett, G. G., Davey, A., & Foster, G. D. (2014). Using technology to promote postpartum weight loss in urban, low-income mothers: A pilot randomized controlled trial. Journal of Nutrition Education and Behavior, 46, 610–615. doi: 10.1016/j.jneb.2014.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Illner, A., Freisling, H., Boeing, H., Huybrechts, I., Crispim, S., & Slimani, N. (2012). Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. International Journal of Epidemiology, 41, 1187–1203. doi: 10.1093/ije/dys105 CrossRefPubMedGoogle Scholar
  41. Jia, W., Chen, H.-C., Yue, Y., Li, Z., Fernstrom, J., Bai, Y., et al. (2014). Accuracy of food portion size estimation from digital pictures acquired by a chest-worn camera. Public Health Nutrition, 17, 1671–1681. doi: 10.1017/S1368980013003236 CrossRefPubMedGoogle Scholar
  42. Johansson, G., Wikman, Å., Åhrén, A.-M., Hallmans, G., & Johansson, I. (2001). Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutrition, 4, 919–927. doi: 10.1079/PHN2001124 CrossRefPubMedGoogle Scholar
  43. Johnson, S. M., & White, G. (1971). Self-observation as an agent of behavioral change. Behavior Therapy, 2, 488–497. doi: 10.1016/S0005-7894(71)80095-3 CrossRefGoogle Scholar
  44. Johnston, J. D., Massey, A. P., & Devaneaux, C. A. (2012). Innovation in weight loss programs: A 3-dimensional virtual-world approach. Journal of Medical Internet Research, 14, e120. doi: 10.2196/jmir.2254 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Joiner, R., Gavin, J., Brosnan, M., Cromby, J., Gregory, H., Guiller, J., et al. (2013). Comparing first and second generation digital natives’ internet use, internet anxiety, and internet identification. Cyberpsychology, Behavior, and Social Networking, 16, 549–552. doi: 10.1089/cyber.2012.0526 CrossRefGoogle Scholar
  46. Kaplan, J. S., & Tolin, D. F. (2011). Exposure therapy for anxiety disorders theoretical mechanisms of exposure and treatment strategies. Psychiatric Times, 28, 33–37.Google Scholar
  47. King, A. C., Glanz, K., & Patrick, K. (2015). Technologies to measure and modify physical activity and eating environments. American Journal of Preventive Medicine, 48, 630–638. doi: 10.1016/j.amepre.2014.10.005 CrossRefPubMedGoogle Scholar
  48. Klasnja, P., Hekler, E. B., Saul, S., Boruvka, A., Almiral, D., Tewari, A., et al. (2015). Microrandomized trials: An experimental design for developing just-in-time adaptive interventions. Health Psychology, 34, 1220–1228. doi: 10.1037/hea0000305 CrossRefPubMedCentralGoogle Scholar
  49. Kong, A., Tussing-Humphreys, L., Odoms-Young, A., Stolley, M., & Fitzgibbon, M. (2014). Systematic review of behavioural interventions with culturally adapted strategies to improve diet and weight outcomes in african american women. Obesity Reviews, 15, 62–92. doi: 10.1111/obr.12203 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kshetri, N. (2014). Big data’s impact on privacy, security and consumer welfare. Telecommunications Policy, 38, 1134–1145. doi: 10.1016/j.telpol.2014.10.002 CrossRefGoogle Scholar
  51. Kumar, S., Al’Absi, M., Beck, J., Ertin, E., & Scott, M. (2014). Behavioral monitoring and assessment via mobile sensing technologies. In L. Marsch & J. Dallery (Eds.), Behavioral healthcare and technology: Using science-based innovations to transform practice (pp. 27–39). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  52. Leahey, T. M., Subak, L. L., Fava, J., Schembri, M., Thomas, G., Xu, X., et al. (2015). Benefits of adding small financial incentives or optional group meetings to a web-based statewide obesity initiative. Obesity, 23, 70–76. doi: 10.1002/oby.20937 CrossRefPubMedGoogle Scholar
  53. Leahey, T. M., Thomas, G., Fava, J. L., Subak, L. L., Schembri, M., Krupel, K., et al. (2014). Adding evidence-based behavioral weight loss strategies to a statewide wellness campaign: A randomized clinical trial. American Journal of Public Health, 104, 1300–1306. doi: 10.2105/AJPH.2014.301870 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liao, P., Klasnja, P., Tewari, A., & Murphy, S. A. (2016). Sample size calculations for micro-randomized trials in mHealth. Statistics in Medicine, 35, 1944–1971. doi: 10.1002/sim.6847 CrossRefPubMedGoogle Scholar
  55. Lin, P. H., Wang, Y., Levine, E., Askew, S., Lin, S., Chang, C., et al. (2014). A text messaging-assisted randomized lifestyle weight loss clinical trial among overweight adults in Beijing. Obesity, 22, E29–E37. doi: 10.1002/oby.20686 CrossRefPubMedGoogle Scholar
  56. Ljótsson, B., Hesser, H., Andersson, E., Lackner, J. M., El Alaoui, S., Falk, L., et al. (2014). Provoking symptoms to relieve symptoms: A randomized controlled dismantling study of exposure therapy in irritable bowel syndrome. Behaviour Research and Therapy, 55, 27–39. doi: 10.1016/j.brat.2014.01.007 CrossRefPubMedGoogle Scholar
  57. Madden, M., Fox, S., Smith, A., & Vitak, J. (2007). Digital footprints. Retrieved December 20, 2015 from http://www.pewinternet.org/2007/12/16/digital-footprints/
  58. Manzoni, G. M., Pagnini, F., Corti, S., Molinari, E., & Castelnuovo, G. (2011). Internet-based behavioral interventions for obesity: An updated systematic review. Clinical Practice and Epidemiology in Mental Health, 7, 19–28. doi: 10.1186/1471-244X-13-207 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Martin, C. K., Nicklas, T., Gunturk, B., Correa, J. B., Allen, H., & Champagne, C. (2014). Measuring food intake with digital photography. Journal of Human Nutrition & Dietetics, 27, 72–81. doi: 10.1111/jhn.12014 CrossRefGoogle Scholar
  60. Napolitano, M. A., Hayes, S., Bennett, G. G., Ives, A. K., & Foster, G. D. (2013). Using facebook and text messaging to deliver a weight loss program to college students. Obesity, 21, 25–31. doi: 10.1002/oby.20232 CrossRefPubMedGoogle Scholar
  61. Neve, M., Morgan, P. J., Jones, P., & Collins, C. (2010). Effectiveness of web-based interventions in achieving weight loss and weight loss maintenance in overweight and obese adults: A systematic review with meta-analysis. Obesity Reviews, 11, 306–321. doi: 10.1111/j.1467-789X.2009.00646.x CrossRefPubMedGoogle Scholar
  62. Ogden, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2014). Prevalence of childhood and adult obesity in the united states, 2011–2012. Journal of the American Medical Association, 311, 806–814. doi: 10.1001/jama.2014.732 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Otado, J., Kwagyan, J., Edwards, D., Ukaegbu, A., Rockcliffe, F., & Osafo, N. (2015). Culturally competent strategies for recruitment and retention of African American populations into clinical trials. Clinical and Translational Science, 8, 460–466. doi: 10.1111/cts.12285 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pagoto, S. L., Schneider, K. L., Oleski, J. L., Luciani, J. M., Bodenlos, J. S., & Whited, M. C. (2012). Male inclusion in randomized controlled trials of lifestyle weight loss interventions. Obesity, 20, 1234–1239. doi: 10.1038/oby.2011.140 CrossRefPubMedGoogle Scholar
  65. Patrick, K., Calfas, K. J., Norman, G. J., Rosenberg, D., Zabinski, M. F., Sallis, J. F., et al. (2011). Outcomes of a 12-month web-based intervention for overweight and obese men. Annals of Behavioral Medicine, 42, 391–401. doi: 10.1007/s12160-011-9296-7 CrossRefPubMedGoogle Scholar
  66. Pellegrini, C. A., Hoffman, S. A., Collins, L. M., & Spring, B. (2014). Optimization of remotely delivered intensive lifestyle treatment for obesity using the multiphase optimization strategy: Opt-in study protocol. Contemporary Clinical Trials, 38, 251–259. doi: 10.1016/j.cct.2014.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ramo, D. E., & Prochaska, J. J. (2012). Broad reach and targeted recruitment using facebook for an online survey of young adult substance use. Journal of Medical Internet Research, 14, 1–10. doi: 10.2196/jmir.1878 CrossRefGoogle Scholar
  68. Rao, G., Burke, L. E., Spring, B. J., Ewing, L. J., Turk, M., Lichtenstein, A. H., et al. (2011). New and emerging weight management strategies for busy ambulatory settings a scientific statement from the American heart association endorsed by the society of behavioral medicine. Circulation, 124, 1182–1203. doi: 10.1161/CIR.0b013e31822b9543 CrossRefPubMedGoogle Scholar
  69. Reed, V. A., Schifferdecker, K. E., Rezaee, M. E., O’Connor, S., & Larson, R. J. (2012). The effect of computers for weight loss: A systematic review and meta-analysis of randomized trials. Journal of General Internal Medicine, 27, 99–108. doi: 10.1007/s11606-011-1803-9 CrossRefPubMedGoogle Scholar
  70. Resick, P. A., Galovski, T. E., Uhlmansiek, M. O. B., Scher, C. D., Clum, G. A., & Young-Xu, Y. (2008). A randomized clinical trial to dismantle components of cognitive processing therapy for posttraumatic stress disorder in female victims of interpersonal violence. Journal of Consulting and Clinical Psychology, 76, 243–258. doi: 10.1037/0022-006X.76.2.243 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schoeller, D. A. (1995). Limitations in the assessment of dietary energy intake by self-report. Metabolism, 44, 18–22. doi: 10.1016/0026-0495(95)90204-X CrossRefPubMedGoogle Scholar
  72. Shapiro, J. R., Koro, T., Doran, N., Thompson, S., Sallis, J. F., Calfas, K., et al. (2012). Text4diet: A randomized controlled study using text messaging for weight loss behaviors. Preventive Medicine, 55, 412–417. doi: 10.1016/j.ypmed.2012.08.011 CrossRefPubMedGoogle Scholar
  73. Sharp, D. B., & Allman-Farinelli, M. (2014). Feasibility and validity of mobile phones to assess dietary intake. Nutrition, 30, 1257–1266. doi: 10.1016/j.nut.2014.02.020 CrossRefPubMedGoogle Scholar
  74. Shaw, R. J., Bosworth, H. B., Silva, S. S., Lipkus, I. M., Davis, L. L., Ronald, S. S., et al. (2013). Mobile health messages help sustain recent weight loss. The American Journal of Medicine, 126, 1002–1009. doi: 10.1016/j.amjmed.2013.07.001 CrossRefPubMedGoogle Scholar
  75. Shuger, S. L., Barry, V. W., Sui, X., McClain, A., Hand, G. A., Wilcox, S., et al. (2011). Electronic feedback in a diet-and physical activity-based lifestyle intervention for weight loss: A randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity, 8, 41–48. doi: 10.1186/1479-5868-8-41 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Siopis, G., Chey, T., & Allman-Farinelli, M. (2015). A systematic review and meta-analysis of interventions for weight management using text messaging. Journal of Human Nutrition & Dietetics, 28, 1–15. doi: 10.1111/jhn.12207 CrossRefGoogle Scholar
  77. Spring, B., Duncan, J. M., Janke, E. A., Kozak, A. T., McFadden, H. G., DeMott, A., et al. (2013). Integrating technology into standard weight loss treatment: A randomized controlled trial. Journal of the American Medical Association Internal Medicine, 173, 105–111. doi: 10.1001/jamainternmed.2013.1221 PubMedPubMedCentralGoogle Scholar
  78. Statistica. (2015). Number of apps available in leading app stores as of July 2015. Retrieved May 20, 2015 from http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
  79. Steinberg, D. M., Levine, E. L., Askew, S., Foley, P., & Bennett, G. G. (2013). Daily text messaging for weight control among racial and ethnic minority women: Randomized controlled pilot study. Journal of Medical Internet Research, 15, e244. doi: 10.2196/jmir.2844 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Stephens, J., & Allen, J. (2013). Mobile phone interventions to increase physical activity and reduce weight: A systematic review. The Journal of Cardiovascular Nursing, 28, 320–329. doi: 10.1097/JCN.0b013e318250a3e7 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Stone, A. A., Shiffman, S., Schwartz, J. E., Broderick, J. E., & Hufford, M. R. (2003). Patient compliance with paper and electronic diaries. Controlled Clinical Trials, 24, 182–199. doi: 10.1016/S0197-2456(02)00320-3 CrossRefPubMedGoogle Scholar
  82. Tang, J., Abraham, C., Greaves, C., & Yates, T. (2014). Self-directed interventions to promote weight loss: A systematic review of reviews. Journal of Medical Internet Research, 16, e58. doi: 10.2196/jmir.2857 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tate, D. F., Jackvony, E. H., & Wing, R. R. (2006). A randomized trial comparing human e-mail counseling, computer-automated tailored counseling, and no counseling in an internet weight loss program. Archives of Internal Medicine, 166, 1620–1625. doi: 10.1001/archinte.166.15.1620 CrossRefPubMedGoogle Scholar
  84. Thomas, J. G., Leahey, T. M., & Wing, R. R. (2015). An automated internet behavioral weight-loss program by physician referral: A randomized controlled trial. Diabetes Care, 38, 9–15. doi: 10.2337/dc14-1474 CrossRefPubMedGoogle Scholar
  85. Thorndike, A. N., Sonnenberg, L., Healey, E., Myint-U, K., Kvedar, J. C., & Regan, S. (2012). Prevention of weight gain following a worksite nutrition and exercise program: A randomized controlled trial. American Journal of Preventive Medicine, 43, 27–33. doi: 10.1016/j.amepre.2012.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Trude, A. C., Kharmats, A., Jock, B., Liu, D., Lee, K., Martins, P. A., et al. (2015). Patterns of food consumption are associated with obesity, self-reported diabetes and cardiovascular disease in five american indian communities. Ecology of Food and Nutrition, 54, 437–454. doi: 10.1080/03670244.2014.922070 CrossRefPubMedGoogle Scholar
  87. Turk, M. W., Elci, O. U., Wang, J., Sereika, S. M., Ewing, L. J., Acharya, S. D., et al. (2013). Self-monitoring as a mediator of weight loss in the smart randomized clinical trial. International Journal of Behavioral Medicine, 20, 556–561. doi: 10.1007/s12529-012-9259-9 CrossRefPubMedGoogle Scholar
  88. Turner-McGrievy, G., & Tate, D. (2011). Tweets, apps, and pods: Results of the 6-month mobile pounds off digitally (mobile pod) randomized weight-loss intervention among adults. Journal of Medical Internet Research, 13, e120. doi: 10.2196/jmir.1841 CrossRefPubMedPubMedCentralGoogle Scholar
  89. U.S. Preventive Services Task Force. (2012). Obesity in adults: Screening and management. Retrieved January 2, 2016 from http://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/obesity-in-adults-screening-and-management
  90. Walker, R. E., Keane, C. R., & Burke, J. G. (2010). Disparities and access to healthy food in the united states: A review of food deserts literature. Health & Place, 16, 876–884. doi: 10.1016/j.healthplace.2010.04.013 CrossRefGoogle Scholar
  91. Wallerstein, N. B., & Duran, B. (2006). Using community-based participatory research to address health disparities. Health Promotion Practice, 7, 312–323. doi: 10.1177/1524839906289376 CrossRefPubMedGoogle Scholar
  92. Webber, K. H., & Rose, S. A. (2013). A pilot internet-based behavioral weight loss intervention with or without commercially available portion-controlled foods. Obesity, 21, E354–E359. doi: 10.1002/oby.20331 PubMedGoogle Scholar
  93. Wharton, C. M., Johnston, C. S., Cunningham, B. K., & Sterner, D. (2014). Dietary self-monitoring, but not dietary quality, improves with use of smartphone app technology in an 8-week weight loss trial. Journal of Nutrition Education and Behavior, 46, 440–444. doi: 10.1016/j.jneb.2014.04.291 CrossRefPubMedGoogle Scholar
  94. Wieland, L. S., Falzon, L., Sciamanna, C. N., Trudeau, K. J., Brodney, S., Schwartz, J. E., et al. (2012). Interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people. Cochrane Database System Review, 8(8), CD007675. doi: 10.1002/14651858.CD007675 Google Scholar
  95. Yackobovitch-Gavan, M., Steinberg, D., Endevelt, R., & Benyamini, Y. (2015). Factors associated with dropout in a group weight-loss programme: A longitudinal investigation. Journal of Human Nutrition & Dietetics, 28, 33–40. doi: 10.1111/jhn.12220 CrossRefGoogle Scholar
  96. Yuan, P., Bare, M. G., Johnson, M. O., & Saberi, P. (2014). Using online social media for recruitment of human immunodeficiency virus-positive participants: A cross-sectional survey. Journal of Medical Internet Research, 16, 1–9. doi: 10.2196/jmir.3229 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Andrea T. Kozak
    • 1
  • Joanna Buscemi
    • 2
  • Misty A. W. Hawkins
    • 3
  • Monica L. Wang
    • 4
  • Jessica Y. Breland
    • 5
    • 6
  • Kathryn M. Ross
    • 7
  • Anupama Kommu
    • 8
  1. 1.Department of PsychologyOakland UniversityRochesterUSA
  2. 2.Department of PsychologyDePaul UniversityChicagoUSA
  3. 3.Department of PsychologyOklahoma State UniversityStillwaterUSA
  4. 4.Department of Community Health SciencesBoston UniversityBostonUSA
  5. 5.Center for Innovation to ImplementationVA Palo Alto Health Care SystemMenlo ParkUSA
  6. 6.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  7. 7.Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleUSA
  8. 8.Mind Body Connection, Inc.ManassasUSA

Personalised recommendations