Journal of Behavioral Medicine

, Volume 40, Issue 2, pp 332–342 | Cite as

Replacing sedentary time with sleep, light, or moderate-to-vigorous physical activity: effects on self-regulation and executive functioning

  • J. FanningEmail author
  • G. Porter
  • E. A. Awick
  • D. K. Ehlers
  • S. A. Roberts
  • G. Cooke
  • A. Z. Burzynska
  • M. W. Voss
  • A. F. Kramer
  • E. McAuley


Recent attention has highlighted the importance of reducing sedentary time for maintaining health and quality of life. However, it is unclear how changing sedentary behavior may influence executive functions and self-regulatory strategy use, which are vital for the long-term maintenance of a health behavior regimen. The purpose of this cross-sectional study is to examine the estimated self-regulatory and executive functioning effects of substituting 30 min of sedentary behavior with 30 min of light activity, moderate-to-vigorous physical activity (MVPA), or sleep in a sample of older adults. This study reports baseline data collected from low-active healthy older adults (N = 247, mean age 65.4 ± 4.6 years) recruited to participate in a 6 month randomized controlled exercise trial examining the effects of various modes of exercise on brain health and function. Each participant completed assessments of physical activity self-regulatory strategy use (i.e., self-monitoring, goal-setting, social support, reinforcement, time management, and relapse prevention) and executive functioning. Physical activity and sedentary behaviors were measured using accelerometers during waking hours for seven consecutive days at each time point. Isotemporal substitution analyses were conducted to examine the effect on self-regulation and executive functioning should an individual substitute sedentary time with light activity, MVPA, or sleep. The substitution of sedentary time with both sleep and MVPA influenced both self-regulatory strategy use and executive functioning. Sleep was associated with greater self-monitoring (B = .23, p = .02), goal-setting (B = .32, p < .01), and social support (B = .18, p = .01) behaviors. Substitution of sedentary time with MVPA was associated with higher accuracy on 2-item (B = .03, p = .01) and 3-item (B = .02, p = .04) spatial working memory tasks, and with faster reaction times on single (B = −23.12, p = .03) and mixed-repeated task-switching blocks (B = −27.06, p = .04). Substitution of sedentary time with sleep was associated with marginally faster reaction time on mixed-repeated task-switching blocks (B = −12.20, p = .07) and faster reaction time on mixed-switch blocks (B = 17.21, p = .05), as well as reduced global reaction time switch cost (B = −16.86, p = .01). Substitution for light intensity physical activity did not produce significant effects. By replacing sedentary time with sleep and MVPA, individuals may bolster several important domains of self-regulatory behavior and executive functioning. This has important implications for the design of long-lasting health behavior interventions.

Trial Registration identifier NCT00438347.


Sedentary behavior Sleep Physical activity Self-regulation Executive function 



Supported by the National Institute on Aging at the National Institutes of Health (Grant Number 2R37 AG025667) and a grant from the Center for Nutrition, Learning, and Memory at the University of Illinois (ANGC1208).

Compliance with ethical standards

Conflict of interest

J. Fanning, G. Porter, E. A. Awick, D. K. Ehlers, S. A. Roberts, G. Cooke, A. Z. Burzynska, M. W. Voss, A. F. Kramer, and E. McAuley declares that they have no conflict of interest.

Human and animal rights and Informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.


  1. Actigraph. (2011). What are counts? Accessed January 26, 2015.
  2. Anderson, B., Storfer-Isser, A., Taylor, H. G., Rosen, C. L., & Redline, S. (2009). Associations of executive function with sleepiness and sleep duration in adolescents. Pediatrics, 123, e701–e707. doi: 10.1542/peds.2008-1182 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W. H. Freeman and Company.Google Scholar
  4. Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52, 1–26. doi: 10.1146/annurev.psych.52.1.1 CrossRefPubMedGoogle Scholar
  5. Bandura, A. (2004). Health promotion by social cognitive means. Health Education & Behavior, 31, 143–164. doi: 10.1177/1090198104263660 CrossRefGoogle Scholar
  6. Baumeister, R. F., & Heatherton, T. F. (1996). Self-regulation failure: An overview. Psychological Inquiry, 7, 1–15. doi: 10.1207/s15327965pli0701_1 CrossRefGoogle Scholar
  7. Benloucif, S., Orbeta, L., Ortiz, R., Janssen, I., Finkel, S. I., Bleiberg, J., et al. (2004). Morning or evening activity improves neuropsychological performance and subjective sleep quality in older adults. Sleep, 27, 1542–1551.PubMedGoogle Scholar
  8. Buchman, A. S., Boyle, P. A., Yu, L., Shah, R. C., Wilson, R. S., & Bennett, D. A. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology, 78, 1323–1329. doi: 10.1212/WNL.0b013e3182535d35 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buckley, J., Cohen, J. D., Kramer, A. F., McAuley, E., & Mullen, S. P. (2014). Cognitive control in the self-regulation of physical activity and sedentary behavior. Frontiers in Human Neuroscience, 8, 747. doi: 10.3389/fnhum.2014.00747 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buman, M. P., Epstein, D. R., Gutierrez, M., Herb, C., Hollingshead, K., Huberty, J. L., et al. (2015). BeWell24: development and process evaluation of a smartphone “app” to improve sleep, sedentary, and active behaviors in US Veterans with increased metabolic risk. Translational Behavioral Medicine. doi: 10.1007/s13142-015-0359-3 Google Scholar
  11. Buman, M. P., Winkler, E. A. H., Kurka, J. M., Hekler, E. B., Baldwin, C. M., Owen, N., et al. (2014). Reallocating time to sleep, sedentary behaviors, or active behaviors: Associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. American Journal of Epidemiology, 179, 323–334. doi: 10.1093/aje/kwt292 CrossRefPubMedGoogle Scholar
  12. Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28, 193–213. doi: 10.1016/0165-1781(89)90047-4 CrossRefPubMedGoogle Scholar
  13. Cajochen, C., Frey, S., Anders, D., Späti, J., Bues, M., Pross, A., et al. (2011). Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology, 110, 1432–1438. doi: 10.1152/japplphysiol.00165.2011 CrossRefPubMedGoogle Scholar
  14. Caplan, B., & Mendoza, J. E. (2011). Edinburgh Handedness Inventory. In J. S. Kreutzer, J. DeLuca, & B. Caplan (Eds.), Encyclopedia of clinical neuropsychology (pp. 928–928). New York, NY: Springer New York. doi: 10.1007/978-0-387-79948-3
  15. Carver, C. S., & Scheier, M. F. (1981). Attention and self-regulation: A control-theory approach to human behavior. doi: 10.1007/978-1-4612-5887-2
  16. Centers for Disease Control and Prevention. (2015a). Chronic disease overview. Accessed April 1, 2016.
  17. Centers for Disease Control and Prevention. (2015b). Nutrition, physical activity and obesity data, trends and maps web site. Atlanta, GA. Accessed April 1, 2016.Google Scholar
  18. Chee, M. W. L., & Choo, W. C. (2004). Functional imaging of working memory after 24 hr of total sleep deprivation. The Journal of Neuroscience. doi: 10.1523/JNEUROSCI.0007-04.2004 Google Scholar
  19. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61, 1166–1170. doi: 10.1093/gerona/61.11.1166 CrossRefGoogle Scholar
  20. Collins, L. M., Murphy, S. A., & Strecher, V. J. (2007). The multiphase optimization strategy (MOST) and the sequential multiple assignment randomized trial (SMART): New methods for more potent eHealth interventions. American Journal of Preventive Medicine, 32, 112–118. doi: 10.1016/j.amepre.2007.01.022 CrossRefGoogle Scholar
  21. Copeland, J. L., & Esliger, D. W. (2009). Accelerometer assessment of physical activity in active, healthy older adults. Journal of aging and physical activity, 17, 17–30. Accessed February 18, 2015.
  22. Couyoumdjian, A., Sdoia, S., Tempesta, D., Curcio, G., Rastellini, E., De Gennaro, L., et al. (2010). The effects of sleep and sleep deprivation on task-switching performance. Journal of Sleep Research, 19, 64–70. doi: 10.1111/j.1365-2869.2009.00774.x CrossRefPubMedGoogle Scholar
  23. Daly, M., McMinn, D., & Allan, J. L. (2014). A bidirectional relationship between physical activity and executive function in older adults. Frontiers in human neuroscience, 8, 1044. doi: 10.3389/fnhum.2014.01044 PubMedGoogle Scholar
  24. de Jager, C. A., Budge, M. M., & Clarke, R. (2003). Utility of TICS-M for the assessment of cognitive function in older adults. International Journal of Geriatric Psychiatry, 18, 318–324. doi: 10.1002/gps.830 CrossRefPubMedGoogle Scholar
  25. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. doi: 10.1146/annurev-psych-113011-143750 CrossRefPubMedGoogle Scholar
  26. Dreisbach, G., & Haider, H. (2009). How task representations guide attention: Further evidence for the shielding function of task sets. Journal of Experimental Psychology, 35, 477–486. doi: 10.1037/a0014647 PubMedGoogle Scholar
  27. Dzierzewski, J. M., Buman, M. P., Giacobbi, P. R., Roberts, B. L., Aiken-Morgan, A. T., Marsiske, M., et al. (2014). Exercise and sleep in community-dwelling older adults: Evidence for a reciprocal relationship. Journal of Sleep Research, 23, 61–68. doi: 10.1111/jsr.12078 CrossRefPubMedGoogle Scholar
  28. Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030–1039. doi: 10.1002/hipo.20547 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–3022. doi: 10.1073/pnas.1015950108 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Evenson, K. R., Buchner, D. M., & Morland, K. B. (2012). Objective measurement of physical activity and sedentary behavior among US adults aged 60 years or older. Preventing Chronic Disease, 9, E26.PubMedGoogle Scholar
  31. Fanning, J., Mullen, S. P., & McAuley, E. (2012). Increasing physical activity with mobile devices: A meta-analysis. Journal of Medical Internet Research, 14, e161. doi: 10.2196/jmir.2171 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fanning, J., Porter, G., Awick, E. A., Wójcicki, T. R., Gothe, N. P., Roberts, S. A., et al. (2016). Effects of a DVD-delivered exercise program on patterns of sedentary behavior in older adults: A randomized controlled trial. Preventive Medicine Reports, 3, 238–243. doi: 10.1016/j.pmedr.2016.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.CrossRefPubMedGoogle Scholar
  34. Fossum, I. N., Nordnes, L. T., Storemark, S. S., Bjorvatn, B., & Pallesen, S. (2014). The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behavioral Sleep Medicine, 12, 343–357. doi: 10.1080/15402002.2013.819468 CrossRefPubMedGoogle Scholar
  35. Goel, N., Rao, H., Durmer, J. S., & Dinges, D. F. (2009). Neurocognitive consequences of sleep deprivation. Seminars in Neurology, 29, 320–339. doi: 10.1055/s-0029-1237117 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gohar, A., Adams, A., Gertner, E., Sackett-Lundeen, L., Heitz, R., Engle, R. W., et al. (2009). Working memory capacity is decreased in sleep-deprived internal medicine residents. Journal of Clinical Sleep Medicine, 5, 191–197.PubMedPubMedCentralGoogle Scholar
  37. Hagger, M. S. (2009). Sleep, self-regulation, self-control and health. Stress and Health, 26, 181–185. doi: 10.1002/smi.1345 CrossRefGoogle Scholar
  38. Hawkes, T. (2014). Cross-sectional comparison of executive attention function in normally aging long-term t’ai chi, meditation, and aerobic fitness practitioners versus sedentary. The Journal of Alternative and Complementary Medicine. doi: 10.1089/acm.2013.0266 PubMedPubMedCentralGoogle Scholar
  39. Healy, G. N., Dunstan, D. W., Salmon, J., Cerin, E., Shaw, J. E., Zimmet, P. Z., et al. (2008). Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes Care, 31, 661–666. doi: 10.2337/dc07-2046 CrossRefPubMedGoogle Scholar
  40. Healy, G. N., Matthews, C. E., Dunstan, D. W., Winkler, E. A. H., & Owen, N. (2011). Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. European Heart Journal, 32, 590–597. doi: 10.1093/eurheartj/ehq451 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hillman, C. H., Kramer, A. F., Belopolsky, A. V., & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59, 30–39. doi: 10.1016/j.ijpsycho.2005.04.009 CrossRefPubMedGoogle Scholar
  42. Hofmann, W., Friese, M., & Roefs, A. (2009). Three ways to resist temptation: The independent contributions of executive attention, inhibitory control, and affect regulation to the impulse control of eating behavior. Journal of Experimental Social Psychology, 45, 431–435. doi: 10.1016/j.jesp.2008.09.013 CrossRefGoogle Scholar
  43. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences. doi: 10.1016/j.tics.2012.01.006 PubMedGoogle Scholar
  44. Ju, Y. S., Lucey, B. P., & Holtzman, D. M. (2014). Sleep and Alzheimer disease pathology: A bidirectional relationship. Nature Reviews Neurology, 10, 115–119. doi: 10.1038/nrneurol.2013.269 CrossRefPubMedGoogle Scholar
  45. Khalsa, S. B. S., Jewett, M. E., Cajochen, C., & Czeisler, C. A. (2003). A phase response curve to single bright light pulses in human subjects. The Journal of Physiology, 549, 945–952. doi: 10.1113/jphysiol.2003.040477 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Könen, T., Dirk, J., & Schmiedek, F. (2015). Cognitive benefits of last night’s sleep: Daily variations in children’s sleep behavior are related to working memory fluctuations. Journal of Child Psychology and Psychiatry and Allied Disciplines, 56, 171–182. doi: 10.1111/jcpp.12296 CrossRefGoogle Scholar
  47. Kramer, A. F., Colcombe, S. J., McAuley, E., Scalf, P. E., & Erickson, K. I. (2005). Fitness, aging and neurocognitive function. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2005.09.009
  48. Kruglanski, A. W., Shah, J. Y., Fishbach, A., Friedman, R., Chun, Woo Young, & Sleeth-Keppler, D. (2002). A theory of goal systems. Advances in Experimental Social Psychology, 34, 331–378. doi: 10.1016/S0065-2601(02)80008-9 CrossRefGoogle Scholar
  49. Lambiase, M. J., Gabriel, K. P., Kuller, L. H., & Matthews, K. A. (2013). Temporal relationships between physical activity and sleep in older women. Medicine and Science in Sports and Exercise, 45, 2362–2368. doi: 10.1249/MSS.0b013e31829e4cea CrossRefPubMedGoogle Scholar
  50. Lauderdale, D. (2008). Sleep duration: How well do self-reports reflect objective measures? The CARDIA Sleep Study. Epidemiology, 19, 838–845. doi: 10.1097/EDE.0b013e318187a7b0.Sleep CrossRefPubMedPubMedCentralGoogle Scholar
  51. Levenson, J. C., Shensa, A., Sidani, J. E., Colditz, J. B., & Primack, B. A. (2016). The association between social media use and sleep disturbance among young adults. Preventive Medicine, 85, 36–41. doi: 10.1016/j.ypmed.2016.01.001 CrossRefPubMedGoogle Scholar
  52. Manini, T. M., Carr, L. J., King, A. C., Marshall, S., Robinson, T. N., & Jack Rejeski, W. (2014). Interventions to reduce sedentary behavior. Medicine & Science in Sports & Exercise. doi: 10.1249/MSS.0000000000000519
  53. Marien, H., Aarts, H., & Custers, R. (2012). Being flexible or rigid in goal-directed behavior: When positive affect implicitly motivates the pursuit of goals or means. Journal of Experimental Social Psychology, 48, 277–283. doi: 10.1016/j.jesp.2011.08.013 CrossRefGoogle Scholar
  54. McAuley, E., Mullen, S. P., Szabo, A. N., White, S. M., Wójcicki, T. R., Mailey, E. L., et al. (2011). Self-regulatory processes and exercise adherence in older adults: Executive function and self-efficacy effects. American Journal of Preventive Medicine, 41, 284–290. doi: 10.1016/j.amepre.2011.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mekary, R. A., Lucas, M., Pan, A., Okereke, O. I., Willett, W. C., Hu, F. B., et al. (2013). Isotemporal substitution analysis for physical activity, television watching, and risk of depression. American Journal of Epidemiology, 178, 474–483. doi: 10.1093/aje/kws590 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mekary, R. A., Willett, W. C., Hu, F. B., & Ding, E. L. (2009). Isotemporal substitution paradigm for physical activity epidemiology and weight change. American Journal of Epidemiology, 170, 519–527. doi: 10.1093/aje/kwp163 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Middleton, L. E., Manini, T. M., Simonsick, E. M., Harris, T. B., Barnes, D. E., Tylavsky, F., et al. (2011). Activity energy expenditure and incident cognitive impairment in older adults. Archives of Internal Medicine, 171, 1251–1257. doi: 10.1001/archinternmed.2011.277 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi: 10.1146/annurev.neuro.24.1.167 CrossRefPubMedGoogle Scholar
  59. Orzech, K. M., Grandner, M. A., Roane, B. M., & Carskadon, M. A. (2016). Digital media use in the 2 h before bedtime is associated with sleep variables in university students. Computers in Human Behavior, 55, 43–50. doi: 10.1016/j.chb.2015.08.049 CrossRefPubMedGoogle Scholar
  60. Owen, N. E., et al. (2010). Too much sitting: The population-health science of sedentary behavior. Exercise and Sports Science Reviews, 38, 105–113. doi: 10.1097/JES.0b013e3181e373a2.Too CrossRefGoogle Scholar
  61. Ritterband, L. M., Thorndike, F. P., Gonder-Frederick, L. A., Magee, J. C., Bailey, E. T., Saylor, D. K., et al. (2009). Efficacy of an Internet-based behavioral intervention for adults with insomnia. Archives of General Psychiatry, 66, 692–698. doi: 10.1001/archgenpsychiatry.2009.66 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sallis, J. F., Owen, N., & Fisher, E. B. (2008). Ecological models of health behavior. In Health Behavior and Health Education: Theory, Research, and Practice (pp. 465–485). San Francisco, CA: Jossey-Bass.Google Scholar
  63. Shah, J. Y., Friedman, R., & Kruglanski, A. W. (2002). Forgetting all else: On the antecedents and consequences of goal shielding. Journal of Personality and Social Psychology, 83, 1261–1280. doi: 10.1037/0022-3514.83.6.1261 CrossRefPubMedGoogle Scholar
  64. Talbot, L. S., Neylan, T. C., Metzler, T. J., & Cohen, B. E. (2014). The mediating effect of sleep quality on the relationship between PTSD and physical activity. Journal of Clinical Sleep Medicine, 10, 795–801. doi: 10.5664/jcsm.3878 PubMedPubMedCentralGoogle Scholar
  65. Troiano, R., Berrigan, D., Dodd, K., Masse, L., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 1188. doi: 10.1249/MSS.0b013e31817057da CrossRefGoogle Scholar
  66. Umstattd, M. R., Motl, R., Wilcox, S., Saunders, R., & Watford, M. (2009). Measuring physical activity self-regulation strategies in older adults. Journal of Physical Activity & Health, S105–12.
  67. van der Lely, S., Frey, S., Garbazza, C., Wirz-Justice, A., Jenni, O. G., Steiner, R., et al. (2015). Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. The Journal of Adolescent Health, 56, 113–119. doi: 10.1016/j.jadohealth.2014.08.002 CrossRefPubMedGoogle Scholar
  68. Vandelanotte, C., Müller, A. M., Short, C. E., Hingle, M., Nathan, N., Williams, S. L., et al. (2016). Past, present, and future of ehealth and mhealth research to improve physical activity and dietary behaviors. Journal of Nutrition Education and Behavior, 48, 219–228.e1. doi: 10.1016/j.jneb.2015.12.006
  69. Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111, 1505–1513. doi: 10.1152/japplphysiol.00210.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Warburton, D. E. R., & Bredin, S. S. D. (2016). reflections on physical activity and health: What should we recommend? The Canadian Journal of Cardiology, 32, 1–10. doi: 10.1016/j.cjca.2016.01.024 CrossRefGoogle Scholar
  71. Ward, B. W., Schiller, J. S., & Goodman, R. A. (2014). Multiple chronic conditions among US adults: A 2012 update. Preventing Chronic Disease, 11, E62. doi: 10.5888/pcd11.130389 PubMedPubMedCentralGoogle Scholar
  72. World Health Organization (WHO). (2015). What is moderate-intensity and vigorous-intensity physical activity? World Health Organization. Accessed April 11, 2016.
  73. Wranik, T., Barrett, L. F., & Salovey, P. (2007). Intelligent emotion regulation: Is knowledge power? In Handbook of Emotion Regulation (pp. 393–407). New York, NY: The Guilford Press.Google Scholar
  74. Yaffe, K., Falvey, C. M., & Hoang, T. (2014). Connections between sleep and cognition in older adults. The Lancet Neurology, 13, 1017–1028. doi: 10.1016/S1474-4422(14)70172-3 CrossRefPubMedGoogle Scholar
  75. Zhu, B., Dong, Y., Xu, Z., Gompf, H. S., Ward, S. A. P., Xue, Z., et al. (2012). Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiology of Disease, 48, 348–355. doi: 10.1016/j.nbd.2012.06.022 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of KinesiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.The Beckman Institute for Advanced Science and Technology at the University of IllinoisUrbanaUSA
  3. 3.Department of Human Development and Family StudiesColorado State UniversityFort CollinsUSA
  4. 4.Department of Psychological & Brain SciencesThe University of IowaIowa CityUSA

Personalised recommendations