Journal of Behavioral Medicine

, Volume 37, Issue 6, pp 1180–1192 | Cite as

What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans

  • Ann E. Caldwell Hooper
  • Angela D. Bryan
  • Martin S. Hagger
Article

Abstract

Individuals who are intrinsically motivated to exercise are more likely to do so consistently. In previous research, those with at least one copy of the methionine (met) allele in the brain-derived neurotrophic factor gene (BDNF; rs6265) had greater increases in positive mood and lower perceived exertion during exercise. This study examined whether genotype for BDNF is also related to intrinsic motivation, measured by self-report during a treadmill exercise session and a free-choice behavioral measure (continuing to exercise given the option to stop) among 89 regular exercisers (age M = 23.58, SD = 3.95). Those with at least one copy of the met allele reported greater increases in intrinsic motivation during exercise and were more likely to continue exercising when given the option to stop (55 vs. 33 %). Results suggest that underlying genetic factors may partially influence perceptions of inherent rewards associated with exercise and might inform the development of individually targeted interventions.

Keywords

BDNF val66met polymorphism Genetics Intrinsic motivation Exercise Humans 

Supplementary material

10865_2014_9567_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 49 kb)

References

  1. Adlard, P. A., Perreau, V. M., & Cotman, C. W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiology of Aging, 26, 511–520.PubMedCrossRefGoogle Scholar
  2. Anastasia, A., Deinhardt, K., Chao, M. V., Will, N. E., Irmady, K., Lee, F. S., et al. (2013). Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nature Communications, 4, 2490.PubMedCrossRefGoogle Scholar
  3. Becker, S., & Wojtowicz, J. M. (2007). A model of hippocampal neurogenesis in memory and mood disorders. Trends in Cognitive Sciences, 11, 70–76.PubMedCrossRefGoogle Scholar
  4. Blair, S. N., Haskell, W. L., Ho, P., Paffenbarger, R. S., Vranizan, K. M., Farquhar, J. W., et al. (1985). Assessment of habitual physical-activity by a 7-Day recall in a community survey and controlled experiments. American Journal of Epidemiology, 122, 794–804.PubMedGoogle Scholar
  5. Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.Google Scholar
  6. Bryan, A. D., & Hutchison, K. E. (2012). The role of genomics in health behavior change: Challenges and opportunities. Public Health Genomics, 15, 139–145.PubMedCrossRefGoogle Scholar
  7. Bryan, A. D., Hutchison, K. E., Seals, D. R., & Allen, D. L. (2007). A transdisciplinary model integrating genetic, physiological, and psychological correlates of voluntary exercise. Health Psychology, 26, 30–39.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bryan, A. D., Magnan, R. E., Hooper, A. E., Ciccolo, J. T., Marcus, B., & Hutchison, K. E. (2013). Colorado stride (COSTRIDE): Testing genetic and physiological moderators of response to an intervention to increase physical activity. International Journal of Behavioral Nutrition and Physical Activity, 10, 139.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A meta-analysis. Review of Educational Research, 64, 363–423.CrossRefGoogle Scholar
  10. Carek, P. J., Laibstain, S. E., & Carek, S. M. (2011). Exercise for the treatment of depression and anxiety. International Journal of Psychiatry in Medicine, 41, 15–28.PubMedCrossRefGoogle Scholar
  11. Chatzisarantis, N. L., Frederick, C., Biddle, S. J., Hagger, M. S., & Smith, B. (2007). Influences of volitional and forced intentions on physical activity and effort within the theory of planned behaviour. Journal of Sports Sciences, 25, 699–709.PubMedCrossRefGoogle Scholar
  12. Chatzisarantis, N. L., & Hagger, M. S. (2009). Effects of an intervention based on self-determination theory on self-reported leisure-time physical activity participation. Psychology & Health, 24, 29–48.CrossRefGoogle Scholar
  13. Chen, Z. M., Simmons, M. S., Perry, R. T., Wiener, H. W., Harrell, L. E., & Go, R. C. P. (2008). Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) with Alzheimer’s disease. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 147B, 363–369.CrossRefGoogle Scholar
  14. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.PubMedCrossRefGoogle Scholar
  15. Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–115.CrossRefGoogle Scholar
  16. Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–668.PubMedCrossRefGoogle Scholar
  17. Dishman, R. K., Washburn, R. A., & Schoeller, D. A. (2001). Measurement of physical activity. Quest, 53, 295–309.CrossRefGoogle Scholar
  18. Donovan, M. J., Lin, M. I., Wiegn, P., Ringstedt, T., Kraemer, R., Hahn, R., et al. (2000). Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development, 127, 4531–4540.PubMedGoogle Scholar
  19. Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127.PubMedCrossRefGoogle Scholar
  20. Duman, C. H., Schlesinger, L., Russell, D. S., & Duman, R. S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Research, 1199, 148–158.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dunn, A. L., Trivedi, M. H., Kampert, J. B., Clark, C. G., & Chambliss, H. O. (2005). Exercise treatment for depression: Efficacy and dose response. American Journal of Preventive Medicine, 28, 1–8.PubMedCrossRefGoogle Scholar
  22. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedCrossRefGoogle Scholar
  23. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–3022.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39, 728–734.PubMedCrossRefGoogle Scholar
  25. Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage.Google Scholar
  26. Fortier, M. S., Sweet, S. N., O’Sullivan, T. L., & Williams, G. C. (2007). A self-determination process model of physical activity adoption in the context of a randomized controlled trial. Psychology of Sport and Exercise, 8, 741–757.CrossRefGoogle Scholar
  27. Frederiksen, H., & Christensen, K. (2003). The influence of genetic factors on physical functioning and exercise in second half of life. Scandinavian Journal of Medicine and Science in Sports, 13, 9–18.PubMedCrossRefGoogle Scholar
  28. Freeman, B., Powell, J., Ball, D., Hill, L., Craig, I., & Plomin, R. (1997). DNA by mail: An inexpensive and noninvasive method for collecting DNA samples from widely dispersed populations. Behavior Genetics, 27, 251–257.PubMedCrossRefGoogle Scholar
  29. Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., Paul, R. H., Bryant, R. A., Schofield, P. R., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681–695.PubMedCrossRefGoogle Scholar
  30. Gómez-Pinilla, F., Ying, Z., Opazo, P., Roy, R. R., & Edgerton, V. R. (2001). Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. European Journal of Neuroscience, 13, 1078–1084.PubMedCrossRefGoogle Scholar
  31. Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., McMurray, J., et al. (1999). A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest, 116, 1208–1217.PubMedCrossRefGoogle Scholar
  32. Guay, F., Vallerand, R. J., & Blanchard, C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The situational motivation scale (SIMS). Motivation and Emotion, 24, 175–213.CrossRefGoogle Scholar
  33. Hagger, M. S., & Chatzisarantis, N. L. (2011). Causality orientations moderate the undermining effect of rewards on intrinsic motivation. Journal of Experimental Social Psychology, 47, 485–489.CrossRefGoogle Scholar
  34. Hagger, M. S., Keatley, D. A., Chan, D. C., Chatzisarantis, N. L., Dimmock, J. A., Jackson, B., et al. (2014). The goose is (half) cooked: A consideration of the mechanisms and interpersonal context is needed to elucidate the effects of personal financial incentives on health behaviour. International Journal of Behavioral Medicine, 21, 197–201.PubMedCrossRefGoogle Scholar
  35. Hagger, M. S., Rentzelas, P., & Chatzisarantis, N. L. (in press). Effects of individualist and collectivist group norms and choice on intrinsic motivation. Motivation and Emotion.Google Scholar
  36. Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels—The measurement of affect during exercise. Journal of Sport & Exercise Psychology, 11, 304–317.Google Scholar
  37. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23, 6690–6694.PubMedGoogle Scholar
  38. Hetherington, M. M., & Cecil, J. E. (2010). Gene-environment interactions in obesity. Forum of Nutrition, 63, 195–203.PubMedCrossRefGoogle Scholar
  39. Heyman, E., Gamelin, F. X., Goekint, M., Piscitelli, F., Roelands, B., Leclair, E., et al. (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans—Possible implications for reward and depression. Psychoneuroendocrinology, 37, 844–851.PubMedCrossRefGoogle Scholar
  40. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65.PubMedCrossRefGoogle Scholar
  41. Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Isen, A. M., & Reeve, J. (2005). The influence of positive affect on intrinsic and extrinsic motivation: Facilitating enjoyment of play, responsible work behavior, and self-control. Motivation and Emotion, 29, 297–325.CrossRefGoogle Scholar
  43. Jiang, R., Brummett, B. H., Babyak, M. A., Siegler, I. C., & Williams, R. B. (2013). Brain-derived neurotrophic factor (BDNF) Val66Met and adulthood chronic stress interact to affect depressive symptoms. Journal of Psychiatric Research, 47, 233–239.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G., & Aubry, J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research, 109, 143–148.PubMedCrossRefGoogle Scholar
  45. Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., et al. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9, 735–737.PubMedCrossRefGoogle Scholar
  46. Kwan, B. M., & Bryan, A. D. (2010a). Affective response to exercise as a component of exercise motivation: Attitudes, norms, self-efficacy, and temporal stability of intentions. Psychology of Sport and Exercise, 11, 71–79.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kwan, B. M., & Bryan, A. D. (2010b). In-task and post-task affective response to exercise: Translating exercise intentions into behaviour. British Journal of Health Psychology, 15, 115–131.PubMedCrossRefGoogle Scholar
  48. Lafenetre, P., Leske, O., Ma-Hogemeie, Z., Haghikia, A., Bichler, Z., Wahle, P., et al. (2010). Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis. Frontiers in Behavioral Neuroscience, 3, 34.PubMedCentralPubMedGoogle Scholar
  49. Lang, U. E., Sander, T., Lohoff, F. W., Hellweg, R., Bajbouj, M., Winterer, G., et al. (2007). Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking. Psychopharmacology (Berl), 190, 433–439.CrossRefGoogle Scholar
  50. Levinson, D. F. (2006). The genetics of depression: A review. Biological Psychiatry, 60, 84–92.PubMedCrossRefGoogle Scholar
  51. Li, Y., Luikart, B. W., Birnbaum, S., Chen, J., Kwon, C. H., Kernie, S. G., et al. (2008). TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron, 59, 399–412.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Lonsdale, C., Sabiston, C. M., Raedeke, T. D., Ha, A. S., & Sum, R. K. (2009). Self-determined motivation and students’ physical activity during structured physical education lessons and free choice periods. Preventive Medicine, 48, 69–73.PubMedCrossRefGoogle Scholar
  53. Lox, C. L., Jackson, S., Tubolski, S. W., Wasley, D., & Treasure, D. C. (2000). Revisiting the measurement of exercise-induced feeling states: The Physical Activity Affect Scale. Measurement in Physical Education and Exercise Science, 4, 79–95.CrossRefGoogle Scholar
  54. Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.PubMedGoogle Scholar
  55. Markland, D., & Tobin, V. (2004). A modification to the behavioural regulation in exercise questionnaire to include an assessment of amotivation. Journal of Sport & Exercise Psychology, 26, 191–196.Google Scholar
  56. Mata, J., Thompson, R. J., & Gotlib, I. H. (2010). BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychology, 29, 130–133.PubMedCentralPubMedCrossRefGoogle Scholar
  57. McBride, C. M., Bryan, A. D., Bray, M. S., Swan, G. E., & Green, E. D. (2012). Health behavior change: Can genomics improve behavioral adherence? American Journal of Public Health, 102, 401–405.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Patall, E. A., Cooper, H., & Robinson, J. C. (2008). The effects of choice on intrinsic motivation and related outcomes: A meta-analysis of research findings. Psychological Bulletin, 134, 270–300.PubMedCrossRefGoogle Scholar
  59. Penedo, F. J., & Dahn, J. R. (2005). Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Current Opinion in Psychiatry, 18, 189–193.PubMedCrossRefGoogle Scholar
  60. Pereira, M. A., FitzerGerald, S. J., Gregg, E. W., Joswiak, M. L., Ryan, W. J., Suminski, R. R., et al. (1997). A collection of physical activity questionnaires for health-related research. Medicine and Science in Sports and Exercise, 29, S1–S205.PubMedCrossRefGoogle Scholar
  61. Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 10099–10102.PubMedCrossRefGoogle Scholar
  62. Phares, D. A., Halverstadt, A. A., Shuldiner, A. R., Ferrell, R. E., Douglass, L. W., Ryan, A. S., et al. (2004). Association between body fat response to exercise training and multilocus ADR genotypes. Obesity Research, 12, 807–815.PubMedCrossRefGoogle Scholar
  63. Rankinen, T., Roth, S. M., Bray, M. S., Loos, R., Perusse, L., Wolfarth, B., et al. (2010). Advances in exercise, fitness, and performance genomics. Medicine and Science in Sports and Exercise, 42, 835–846.PubMedCrossRefGoogle Scholar
  64. Roberts, C. K., & Barnard, R. J. (2005). Effects of exercise and diet on chronic disease. Journal of Applied Physiology, 98, 3–30.PubMedCrossRefGoogle Scholar
  65. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
  66. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68–78.PubMedCrossRefGoogle Scholar
  67. Ryan, R. M., & Deci, E. L. (2007). Intrinsic motivation and self-determination in exercise and sport. In M. S. Hagger & N. L. D. Chatzisarantis (Eds.), Intrinsic motivation and self-determination in exercise and sport (pp. 1–19). Champaign, IL: Human Kinetics.Google Scholar
  68. Ryan, R. M., Frederick, C. M., Lepes, D., Rubio, N., & Sheldon, K. M. (1997). Intrinsic motivation and exercise adherence. International Journal of Sport Psychology, 28, 335–354.Google Scholar
  69. Ryan, R. M., Patrick, H., Deci, E. L., & Williams, G. C. (2008). Facilitating health behaviour change and its maintenance: Interventions based on self-determination theory. The European Health Psychologist, 10, 2–5.Google Scholar
  70. Sahay, A., & Hen, R. (2007). Adult hippocampal neurogenesis in depression. Nature Neuroscience, 10, 1110–1115.PubMedCrossRefGoogle Scholar
  71. Sallis, J. F., Haskell, W. L., Wood, P. D., Fortmann, S. P., Rogers, T., Blair, S. N., et al. (1985). Physical-activity assessment methodology in the 5-city project. American Journal of Epidemiology, 121, 91–106.PubMedGoogle Scholar
  72. Seroogy, K. B., Lundgren, K. H., Tran, T. M., Guthrie, K. M., Isackson, P. J., & Gall, C. M. (1994). Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. Journal of Comparative Neurology, 342, 321–334.PubMedCrossRefGoogle Scholar
  73. Sloane, R., Snyder, D. C., Demark-Wahnefried, W., Lobach, D., & Kraus, W. E. (2009). Comparing the 7-day physical activity recall with a triaxial accelerometer for measuring time in exercise. Medicine and Science in Sports and Exercise, 41, 1334–1340.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Stavrakakis, N., Oldehinkel, A. J., Nederhof, E., Oudevoshaar, R. C., Verhulst, F. C., Ormel, J., et al. (2012). Plasticity genes do not modify associations between physical activity and depressive symptoms. Health Psychology.Google Scholar
  75. Stubbe, J. H., Boomsma, D. I., Vink, J. M., Cornes, B. K., Martin, N. G., Skytthe, A., et al. (2006). Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS ONE, 1, e22.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., et al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 10, 631–636.PubMedCrossRefGoogle Scholar
  77. Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 181–188.PubMedCrossRefGoogle Scholar
  78. Vallerand, R. J. (2004). Intrinsic and extrinsic motivation in sport. In C. D. Spielberger (Ed.), Encyclopedia of applied psychology (Vol. 2, pp. 427–435). New York: Academic Press.CrossRefGoogle Scholar
  79. Vansteenkiste, M., Simons, J., Lens, W., Sheldon, K. M., & Deci, E. L. (2004). Motivating learning, performance, and persistence: The synergistic effects of intrinsic goal contents and autonomy-supportive contexts. Journal of Personality and Social Psychology, 87, 246–260.PubMedCrossRefGoogle Scholar
  80. Walker, A. H., Najarian, D., White, D. L., Jaffe, J. F., Kanetsky, P. A., & Rebbeck, T. R. (1999). Collection of genomic DNA by buccal swabs for polymerase chain reaction-based biomarker assays. Environmental Health Perspectives, 107, 517–520.PubMedCentralPubMedCrossRefGoogle Scholar
  81. WHO. (2008). The global burden of disease: 2004 update (p. 2008). Geneva: WHO.Google Scholar
  82. Williams, D. M., Dunsiger, S., Ciccolo, J. T., Lewis, B. A., Albrecht, A. E., & Marcus, B. H. (2008). Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychology of Sport and Exercise, 9, 231–245.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Williams, D. M., Dunsiger, S., Jennings, E. G., & Marcus, B. H. (2012). Does affective valence during and immediately following a 10-min walk predict concurrent and future physical activity? Annals of Behavioral Medicine, 44, 43–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ann E. Caldwell Hooper
    • 1
    • 4
  • Angela D. Bryan
    • 2
  • Martin S. Hagger
    • 3
  1. 1.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Psychology and NeuroscienceUniversity of ColoradoBoulderUSA
  3. 3.Health Psychology and Behavioral Medicine Research Group, School of Psychology and Speech PathologyCurtin UniversityPerthAustralia
  4. 4.Department of AnthropologyEmory UniversityAtlantaUSA

Personalised recommendations