Advertisement

Journal of Behavioral Medicine

, Volume 35, Issue 6, pp 603–615 | Cite as

Predictors of adherence with self-care guidelines among persons with type 2 diabetes: results from a logistic regression tree analysis

  • Takashi YamashitaEmail author
  • Cary S. Kart
  • Douglas A. Noe
Article

Abstract

Type 2 diabetes is known to contribute to health disparities in the U.S. and failure to adhere to recommended self-care behaviors is a contributing factor. Intervention programs face difficulties as a result of patient diversity and limited resources. With data from the 2005 Behavioral Risk Factor Surveillance System, this study employs a logistic regression tree algorithm to identify characteristics of sub-populations with type 2 diabetes according to their reported frequency of adherence to four recommended diabetes self-care behaviors including blood glucose monitoring, foot examination, eye examination and HbA1c testing. Using Andersen’s health behavior model, need factors appear to dominate the definition of which sub-groups were at greatest risk for low as well as high adherence. Findings demonstrate the utility of easily interpreted tree diagrams to design specific culturally appropriate intervention programs targeting sub-populations of diabetes patients who need to improve their self-care behaviors. Limitations and contributions of the study are discussed.

Keywords

Diabetes Self-care Logistic regression tree Chronic disease 

Notes

Acknowledgments

We gratefully acknowledge Dr. Jennifer M. Kinney’s helpful comments and editorial suggestions in the earlier version of this paper.

References

  1. American Diabetes Association. (2010). Living with diabetes. Retrieved April 16, 2010, from http://www.diabetes.org/living-with-diabetes
  2. Andersen, R. M. (1968). A behavioral model of families’ use of health services. Chicago: Center for Health Administration Studies, University of Chicago.Google Scholar
  3. Andersen, R. M. (1995). Revisiting the behavioral model and access to medical care: Does it matter? Journal of Health and Social Behavior, 36, 1–10.PubMedCrossRefGoogle Scholar
  4. Andrulis, D. P. (1998). Access to care is the centerpiece in the elimination of socioeconomic disparities in health. Annals of Internal Medicine, 129, 412–416. doi: 10.1059/0003-4819-129-5-199809010-00012 PubMedGoogle Scholar
  5. Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics, 11, 375–386.CrossRefGoogle Scholar
  6. Benjamins, M. R. (2005). Social determinants of preventive service utilization. Research on Aging, 27, 475–497. doi: 10.1177/0164027505276048 CrossRefGoogle Scholar
  7. Benoit, S. R., Fleming, R., Philis-Tsimikas, A., & Ji, M. (2005). Predictors of glycemic control among patients with type 2 diabetes: A longitudinal study. BMC Public Health, 5, 36.PubMedCrossRefGoogle Scholar
  8. Bertakis, K. D., Azari, R., Helms, L. J., Callahan, E. J., & Robbins, J. A. (2000). Gender differences in the utilization of health care services. The Journal of Family Practice, 49, 147–152.PubMedGoogle Scholar
  9. Boren, S. A. (2007). AADE7 self-care behaviors: Systematic reviews. The Diabetes Educator, 33, 866–871. doi: 10.1177/0145721707309662 PubMedCrossRefGoogle Scholar
  10. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books and Software.Google Scholar
  11. Brown, A. F., Ettner, S. L., Piette, J., Weinberger, M., Gregg, E., Shapiro, M., et al. (2004). Socioeconomic position and health among persons with diabetes mellitus: A conceptual framework and review of the literature. Epidemiologic Reviews, 26, 63–77.PubMedCrossRefGoogle Scholar
  12. Carmona, R. H. (2006). Health literacy: A national priority. Journal of General Internal Medicine, 21, 803–805.CrossRefGoogle Scholar
  13. Centers for Disease Control and Prevention. (2005). Behavioral risk factor surveillance system survey data from Department of Health and Human Servics.Google Scholar
  14. Centers for Disease Control and Prevention. (2007). Take charge of your diabetes (4th ed.). Atlanta, GA: U.S. Department of Health and Human Services.Google Scholar
  15. Chan, K. Y., & Loh, W. Y. (2004). LOTUS: An algorithm for building accurate and comprehensible logistic regression trees. Journal of Computational and Graphical Statistics, 13, 826–852.CrossRefGoogle Scholar
  16. Chung, M. L., Moser, D. K., Lennie, T. A., Worrall-Carter, L., Bentley, B., Trupp, R., et al. (2006). Gender differences in adherence to the sodium-restricted diet in patients with heart failure. Journal of Cardiac Failure, 12, 628–634.PubMedCrossRefGoogle Scholar
  17. Cochran, W. (1954). Some methods for strengthening the common 2 tests. Biometrics, 10, 417–451.CrossRefGoogle Scholar
  18. DeMaris, A. (2005). Regression with social data: Modeling continuous and limited response variables. Hoboken, NJ: Wiley.Google Scholar
  19. Funnell, M., Brown, T., Childs, B., Haas, L., Hosey, G., Jensen, B., et al. (2009). National standards for diabetes self-management education. Diabetes Care, 32, S87.PubMedCrossRefGoogle Scholar
  20. Gallichan, M. (1997). Self monitoring of glucose by people with diabetes: Evidence based practice. BMJ, 314, 964–967.PubMedCrossRefGoogle Scholar
  21. Garfield, S., Malozowski, S., Chin, M., Venkat Narayan, K., Glasgow, R., Green, L., et al. (2003). Considerations for diabetes translational research in real-world settings. Diabetes Care, 26, 2670–2674.PubMedCrossRefGoogle Scholar
  22. Glasgow, R. E., & Anderson, R. M. (1999). In diabetes care, moving from compliance to adherence is not enough. Something entirely different is needed. Diabetes Care, 22, 2090.PubMedCrossRefGoogle Scholar
  23. Haller, M. J., Stalvey, M. S., & Silverstein, J. H. (2004). Predictors of control of diabetes: Monitoring may be the key. The Journal of pediatrics, 144, 660–661.PubMedCrossRefGoogle Scholar
  24. Heeringa, S., West, B. T., & Berglund, P. A. (2010). Applied survey data analysis. New York: CRC Press Taylor & Francis Group.CrossRefGoogle Scholar
  25. Hosmer, D., & Lemeshow, S. (2000). Applied logistic regression. Wiley-Interscience.Google Scholar
  26. International Diabetes Federation. (2005). Global guideline for type 2 diabetes, from http://www.idf.org/Global_guideline
  27. Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119–127.CrossRefGoogle Scholar
  28. Kilbourne, A., Switzer, G., Hyman, K., Crowley-Matoka, M., & Fine, M. (2006). Advancing health disparities research within the health care system: A conceptual framework. American Journal of Public Health, 96, 2113–2121.PubMedCrossRefGoogle Scholar
  29. Klein, R., Knudtson, M. D., Lee, K. E., Gangnon, R., & Klein, B. E. K. (2009). The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: The twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology, 116, 497–503. doi: 10.1016/j.ophtha.2008.10.016 PubMedCrossRefGoogle Scholar
  30. Korn, E. L., & Graubard, B. I. (1999). Analysis of health surveys. New York: Wiley.CrossRefGoogle Scholar
  31. Kutner, M., Greenberg, E., Jin, Y., & Paulsen, C. (2006). The health literacy of America’s adults: Results from the 2003 National Assessment of Adult Literacy. Washington, DC: U.S. Department of Education.Google Scholar
  32. Laakso, M. (1999). Benefits of strict glucose and blood pressure control in type 2 diabetes: Lessons from the UK Prospective Diabetes Study. Circulation, 99, 461–462.PubMedCrossRefGoogle Scholar
  33. LaVeist, T., Thorpe, R., Galarraga, J., Bower, K., & Gary-Webb, T. (2009). Environmental and socio-economic factors as contributors to racial disparities in diabetes prevalence. Journal of General Internal Medicine, 24, 1144–1148.PubMedCrossRefGoogle Scholar
  34. Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Annals of Behavioral Medicine, 26, 172–181.PubMedCrossRefGoogle Scholar
  35. Levine, D. A., Allison, J. J., Cherrington, A., Richman, J., Scarinci, I. C., & Houston, T. K. (2009). Disparities in self-monitoring of blood glucose among low-income ethnic minority populations with diabetes, United States. Ethnicity and Disease, 19, 97–103.PubMedGoogle Scholar
  36. Link, C., & McKinlay, J. (2009). Disparities in the prevalence of diabetes: Is it race/ethnicity or socioeconomic status? Results from the Boston Area Community Health (BACH) survey. Ethnicity and Disease, 19, 288–292.PubMedGoogle Scholar
  37. Loh, W. Y. (2006). Logistic regression tree analysis. In H. Pham (Ed.), Handbook of engineering statistics (pp. 537–549). New York: Springer.CrossRefGoogle Scholar
  38. National Institute of Diabetes and Digestive and Kidney Diseases. (2008). National Diabetes Statistics, 2007 fact sheet. Bethesda, MD: U.S. Department of Health and Human Services.Google Scholar
  39. Navaie-Waliser, M., Feldman, P. H., Gould, D. A., Levine, C., Kuerbis, A. N., & Donelan, K. (2002). When the caregiver needs care: The plight of vulnerable caregivers. American Journal of Public Health, 92, 409–413. doi: 10.2105/ajph.92.3.409 PubMedCrossRefGoogle Scholar
  40. Nichols, G. A., Hillier, T. A., Javor, K., & Brown, J. B. (2000). Predictors of glycemic control in insulin-using adults with type 2 diabetes. Diabetes Care, 23, 273–277.PubMedCrossRefGoogle Scholar
  41. Noe, D. A., Nelson, I. M., Mehdizadeh, S., & Bailer, A. J. (2009). Will they stay or will they go? CHANCE, 22, 58–62. doi: 10.1007/s00144-009-0046-6
  42. Norris, S. L., Lau, J., Smith, S. J., Schmid, C. H., & Engelgau, M. M. (2002). Self-management education for adults with type 2 diabetes: A meta-analysis of the effect on glycemic control. Diabetes Care, 25, 1159–1171.PubMedCrossRefGoogle Scholar
  43. Nwasuruba, C., Khan, M., & Egede, L. E. (2007). Racial/ethnic differences in multiple self-care behaviors in adults with diabetes. Journal of General Internal Medicine, 22, 115–120.PubMedCrossRefGoogle Scholar
  44. Peek, M. E., Cargill, A., & Huang, E. S. (2007). Diabetes health disparities. Medical Care Research and Review, 64, 101S–156S. doi: 10.1177/1077558707305409 PubMedCrossRefGoogle Scholar
  45. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Kaufmann Publisher.Google Scholar
  46. Rose, G., Khaw, K.-T., & Marmot, M. (2008). Rose’s strategy of preventive medicine: The complete original text. Oxford, United Kingdom: Oxford University Press.CrossRefGoogle Scholar
  47. Schillinger, D., Grumbach, K., Piette, J., Wang, F., Osmond, D., Daher, C., et al. (2002). Association of health literacy with diabetes outcomes. The Journal of the American Medical Association, 288, 475–482.CrossRefGoogle Scholar
  48. Scollan-Koliopoulos, M., Walker, E., & Bleich, D. (2010). Perceived risk of amputation, emotions, and foot self-care among adults with Type 2 diabetes. The Diabetes Educator, 36, 473–482.PubMedCrossRefGoogle Scholar
  49. Swan, M. (2009). Emerging patient-driven health care models: An examination of health social networks, consumer personalized medicine and quantified self-tracking. International Journal of Environmental Research and Public Health, 6, 492–525. doi: 10.3390/ijerph6020492 PubMedCrossRefGoogle Scholar
  50. Turner, R., & Holman, R. (1996). The UK prospective diabetes study. Annals of Medicine, 28, 439–444.PubMedCrossRefGoogle Scholar
  51. U.S. Census Bureau (2011) Statistical abstract of the United States (Vol. 130). Wachington, DC.Google Scholar
  52. U.S. Department of Health and Human Services. (2000). Healthy People 2010 With understanding and improving health and objectives for improveing health (2nd ed., Vol. 2). Washington, DC: U.S. Government Printing Office.Google Scholar
  53. Whittemore, R. (2007). Culturally competent interventions for Hispanic adults with type 2 diabetes: A systematic review. Journal of Transcultural Nursing, 18, 157–166.PubMedCrossRefGoogle Scholar
  54. Wild, S. H., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053.PubMedCrossRefGoogle Scholar
  55. Wild, D., von Maltzahn, R., Brohan, E., Christensen, T., Clauson, P., & Gonder-Frederick, L. (2007). A critical review of the literature on fear of hypoglycemia in diabetes: Implications for diabetes management and patient education. Patient Education and Counseling, 68, 10–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Takashi Yamashita
    • 1
    Email author
  • Cary S. Kart
    • 1
  • Douglas A. Noe
    • 2
  1. 1.Scripps Gerontology CenterMiami UniversityOxfordUSA
  2. 2.Department of StatisticsMiami UniversityOxfordUSA

Personalised recommendations