Advertisement

Journal of Behavioral Medicine

, Volume 32, Issue 5, pp 389–405 | Cite as

The relationship between neuropsychological functioning and HAART adherence in HIV-positive adults: a systematic review

  • Travis I. Lovejoy
  • Julie A. Suhr
Article

Abstract

Combination antiretroviral therapy has helped extend the lives of persons infected with HIV; however, the efficacy of highly active antiretroviral therapy (HAART) regimens depends, in part, on the consistency with which the medications are taken. In this paper, we review 11 empirical studies conducted in Western developed nations that utilized psychometrically valid neuropsychological measures to examine the relationship between cognitive functioning and HAART adherence. In general, impaired neuropsychological functioning—particularly within the domains of executive functioning and problem solving, learning and memory, attention and working memory, and global cognitive functioning—was associated with lower medication adherence across studies. However, inconsistent operationalizations of neuropsychological impairment and medication adherence employed in these studies, as well as the paucity of longitudinal data to support temporal relationships, may attenuate these conclusions. We conclude with a set of research recommendations that may help to improve the rigor of future studies and clarify questions left unanswered due to methodological limitations of existing studies.

Keywords

HIV HAART Adherence Neuropsychological functioning 

References

  1. Albert, S. M., Flater, S. R., Clouse, R., Todak, G., Stern, Y., & Marder, K. (2003). Medication management skill in HIV: I. Evidence for adaptation of medication management strategies in people with cognitive impairment. II. Evidence for a pervasive lay model of medication efficacy. AIDS and Behavior, 7, 329–338. doi: 10.1023/A:1025404105378.PubMedCrossRefGoogle Scholar
  2. Albert, S. M., Weber, C. M., Todak, G., Polanco, C., Clouse, R., McElhiney, M., et al. (1999). An observed performance test of medication management ability in HIV: Relation to neuropsychological status and medication adherence outcomes. AIDS and Behavior, 3, 121–128. doi: 10.1023/A:1025483806464.CrossRefGoogle Scholar
  3. Ammassari, A., Antinori, A., Aloisi, M. S., Trotta, M. P., Murri, R., Bartoli, L., et al. (2004). Depressive symptoms, neurocognitive impairment, and adherence to highly active antiretroviral therapy among HIV-infected patients. Psychosomatics, 45, 394–402. doi: 10.1176/appi.psy.45.5.394.PubMedCrossRefGoogle Scholar
  4. Ammassari, A., Trotta, M. P., Murri, R., Castelli, F., Narciso, P., Noto, P., et al. (2002). Correlates and predictors of adherence to highly active antiretroviral therapy: Overview of published literature. Journal of Acquired Immune Deficiency Syndromes, 31, S123–S127.PubMedGoogle Scholar
  5. Anthony, I. C., & Bell, J. E. (2008). The neuropathology of HIV/AIDS. International Review of Psychiatry (Abingdon, England), 20, 15–24. doi: 10.1080/09540260701862037.CrossRefGoogle Scholar
  6. Avants, S. K., Margolin, A., Warburton, L. A., Hawkins, K. A., & Shi, J. (2001). Predictors of nonadherence to HIV-related medication regimens during methadone stabilization. The American Journal on Addictions, 10, 69–78. doi: 10.1080/105504901750160501.PubMedCrossRefGoogle Scholar
  7. Bangsberg, D. R., Hecht, F. M., Charlebois, E. D., Zalopa, A. R., Holodniy, M., Sheiner, L., et al. (2000). Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population. AIDS (London, England), 14, 357–366. doi: 10.1097/00002030-200003100-00008.Google Scholar
  8. Barclay, T. R., Hinkin, C. H., Castellon, S. A., Mason, K. I., Reinhard, M. J., Marion, S. D., et al. (2007). Age-associated predictors of medication adherence in HIV-positive adults: Health beliefs, self-efficacy, and neurocognitive status. Health Psychology, 26, 40–49. doi: 10.1037/0278-6133.26.1.40.PubMedCrossRefGoogle Scholar
  9. Benton, A. L., Hamsher, K., & Sivan, A. B. (1983). Multilingual aphasia examination (3rd ed ed.). Iowa City, IA: AJA Associates.Google Scholar
  10. Berg, K. M., & Arnsten, J. H. (2006). Practical and conceptual challenges in measuring antiretroviral adherence. Journal of Acquired Immune Deficiency Syndromes, 43, S79–S87. doi: 10.1097/01.qai.0000248337.97814.66.PubMedCrossRefGoogle Scholar
  11. Brew, B. J. (2004). Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS (London, England), 18, S75–S78. doi: 10.1097/00002030-200401001-00011.Google Scholar
  12. Brew, B. J., & Gonzalez-Scarano, F. (2007). HIV-associated dementia: An inconvenient truth. Neurology, 68, 324–325. doi: 10.1212/01.wnl.0000252803.24176.76.PubMedCrossRefGoogle Scholar
  13. Butters, N., Grant, I., Haxby, J., Judd, L. L., Martin, A., McClelland, J., et al. (1990). Assessment of AIDS-related cognitive changes: Recommendations of the NIMH workshop on neuropsychological assessment approaches. Journal of Clinical and Experimental Neuropsychology, 12, 963–978. doi: 10.1080/01688639008401035.PubMedCrossRefGoogle Scholar
  14. Casado, J. L., Sabido, R., Perez-Elias, M. J., Antela, A., Oliva, J., Dronda, F., et al. (1999). Percentage of adherence correlates with the risk of protease inhibitor (PI) treatment failure in HIV-infected patients. Antiviral Therapy, 4, 157–161.PubMedGoogle Scholar
  15. Chander, G., Himelhoch, S., & Moore, R. D. (2006). Substance abuse and psychiatric disorders in HIV-positive patients: Epidemiology and impact on antiretroviral therapy. Drugs, 66, 769–789. doi: 10.2165/00003495-200666060-00004.PubMedCrossRefGoogle Scholar
  16. Chesney, M. A., Ickovics, J. R., Chambers, D. B., Gifford, A. L., Neidig, J., Zwickl, B., et al. (2000). Self-reported adherence to antiretroviral medications among participants in HIV clinical trials: The AACTG adherence instruments. AIDS Care, 12, 255–266. doi: 10.1080/09540120050042891.PubMedCrossRefGoogle Scholar
  17. Cohen, J. (1983). The cost of dichotomization. Applied Psychological Measurement, 7, 249–253. doi: 10.1177/014662168300700301.CrossRefGoogle Scholar
  18. Colfax, G., & Guzman, R. (2006). Club drugs and HIV infection: A review. Clinical Infectious Diseases, 42, 1463–1469. doi: 10.1086/503259.PubMedCrossRefGoogle Scholar
  19. Colfax, G., & Shoptaw, S. (2005). The methamphetamine epidemic: Implications for HIV prevention and treatment. Current HIV/AIDS Reports, 2, 194–199. doi: 10.1007/s11904-005-0016-4.PubMedCrossRefGoogle Scholar
  20. D’Elia, L., Satz, P., Uchiyama, C. L., & White, T. (1996). Color trails 1 and 2. Odessa, FL: Psychological Assessment Resources.Google Scholar
  21. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). CVLT adult version: California verbal learning test manual, version 1. San Antonio, TX: The Psychological Corporation, Harcourt Brace & Company.Google Scholar
  22. Echemendia, R. J., & Harris, J. G. (2004). Neuropsychological test use with Hispanic/Latino populations in the United States: Part II of a national survey. Applied Neuropsychology, 11, 4–11. doi: 10.1207/s15324826an1101_2.PubMedCrossRefGoogle Scholar
  23. Falagas, M. E., Zarkadoulia, E. A., Pliatsika, P. A., & Panos, G. (2008). Socioeconomic status (SES) as a determinant of adherence to treatment in HIV infected patients: A systematic review of the literature. Retrovirology, 5, 13. doi: 10.1186/1742-4690-5-13.PubMedCrossRefGoogle Scholar
  24. Falutz, J. (2007). Therapy insight: Body-shape changes and metabolic complications associated with HIV and highly active antiretroviral therapy. Nature Clinical Practice. Endocrinology & Metabolism, 3, 651–661. doi: 10.1038/ncpendmet0587.CrossRefGoogle Scholar
  25. Flowers, K. A., & Robertson, C. (1985). The effects of Parkinson’s disease on the ability to maintain a mental set. Journal of Neurology, Neurosurgery, and Neuropsychiatry, 48, 517–529. doi: 10.1136/jnnp.48.6.517.CrossRefGoogle Scholar
  26. Fogarty, L., Roter, D., Larson, S., Burke, J., Gillespie, J., & Levy, R. (2002). Patient adherence to HIV medication regimens: A review of published and abstract reports. Patient Education and Counseling, 46, 93–108. doi: 10.1016/S0738-3991(01)00219-1.PubMedCrossRefGoogle Scholar
  27. Garcia de Olalla, P., Knobel, H., Carmona, A., Gnelar, A., Lopez-Colmes, J. L., & Cayla, J. A. (2002). Impact of adherence and highly active antiretroviral therapy on survival in HIV-infected patients. Journal of Acquired Immune Deficiency Syndrome, 23, 386–395.Google Scholar
  28. Grant, D. A., & Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38, 404–411. doi: 10.1037/h0059831.PubMedCrossRefGoogle Scholar
  29. Grober, E., & Sliwinski, M. (1991). A prospective study of predictors of adherence to combination antiretroviral medication. Journal of General Internal Medicine, 17, 756–765.Google Scholar
  30. Heaton, R., Grant, I., & Matthews, C. (1991). Comprehensive norms for an expanded Halstead-Reitan battery: Demographic corrections, research findings, and clinical implications. Odessa, FL: Psychological Assessment Resources.Google Scholar
  31. Hinkin, C. H., Castellon, S. A., Durvasula, R. S., Hardy, D. J., Lam, M. N., Mason, K. I., et al. (2002). Medication adherence among HIV+ adults: Effects of cognitive dysfunction and regimen complexity. Neurology, 59, 1944–1950.PubMedGoogle Scholar
  32. Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Durvasula, R. S., Lam, M. N., et al. (2004). Medication adherence in HIV-infected adults: Effects of patient age, cognitive status, and substance abuse. AIDS (London, England), 18, S19–S25. doi: 10.1097/00002030-200401001-00004.Google Scholar
  33. Hult, B., Chana, G., Masliah, E., & Everall, I. (2008). Neurobiology of HIV. International Review of Psychiatry (Abingdon, England), 20, 3–13. doi: 10.1080/09540260701862086.CrossRefGoogle Scholar
  34. Irwin, J. R., & McClelland, G. H. (2003). Negative consequences of dichotomizing continuous predictor variables. JMR, Journal of Marketing Research, 40, 366–371. doi: 10.1509/jmkr.40.3.366.19237.CrossRefGoogle Scholar
  35. Kalichman, S. C., Amaral, C. M., Stearns, H., White, D., Falnagan, J., Pope, H., et al. (2007). Adherence to antiretroviral therapy assessed by unannounced pill counts conducted by telephone. Journal of General Internal Medicine, 22, 1003–1006. doi: 10.1007/s11606-007-0171-y.PubMedCrossRefGoogle Scholar
  36. Kaufman, A. S., & Kaufman, N. L. (1993). Manual: KAIT Kaufman adolescent & adult intelligence test. Circle Pines, MN: American Guidance Service, Inc.Google Scholar
  37. Klove, H. (1963). Clinical neuropsychology. The Medical Clinics of North America, 46, 1647–1658.Google Scholar
  38. Lert, F., & Kazatchkine, M. D. (2007). Antiretroviral HIV treatment and care for injecting drug users: An evidence-based overview. The International Journal on Drug Policy, 18, 255–261. doi: 10.1016/j.drugpo.2007.05.002.PubMedCrossRefGoogle Scholar
  39. Levine, A. J., Hinkin, C. H., Castellon, S. A., Mason, K. I., Lam, M. N., Perkins, A., et al. (2005). Variations in patterns of highly active antiretroviral therapy (HAART) adherence. AIDS and Behavior, 9, 355–362. doi: 10.1007/s10461-005-9009-y.PubMedCrossRefGoogle Scholar
  40. Levine, A. J., Hinkin, C. H., Marion, S., Keuning, A., Castellon, S. A., Lam, M. N., et al. (2006). Adherence to antiretroviral medications in HIV: Differences in data collected via self-report and electronic monitoring. Health Psychology, 25, 329–335. doi: 10.1037/0278-6133.25.3.329.PubMedCrossRefGoogle Scholar
  41. Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  42. Maggiolo, F., Airoldi, M., Kleinloog, H. D., Callegaro, A., Ravasio, V., Arici, C., et al. (2007). Effect of adherence to HAART on virologic outcome and on the selection of resistance-conferring mutations in NNRTI- or PI-treated patients. HIV Clinical Trials, 8, 282–292. doi: 10.1310/hct0805-282.PubMedCrossRefGoogle Scholar
  43. Maxwell, S. E., & Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance. Psychological Bulletin, 113, 181–190. doi: 10.1037/0033-2909.113.1.181.CrossRefGoogle Scholar
  44. McArthur, J. C. (2004). HIV dementia: An evolving disease. Journal of Neuroimmunology, 157, 3–10. doi: 10.1016/j.jneuroim.2004.08.042.PubMedCrossRefGoogle Scholar
  45. Miller, E. N., Satz, P., & Visscher, B. (1991). Computerized and conventional neuropsychological assessment in HIV-1 infected homosexual men. Neurology, 41, 1608–1616.PubMedGoogle Scholar
  46. Murphy, E. L., Collier, A. C., Kalish, L. A., Assmann, S. F., Para, M. R., Flanigan, T. P., et al. (2001). Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease. Annals of Internal Medicine, 135, 17–26.PubMedGoogle Scholar
  47. Nicastri, E., Leone, S., Angeletti, C., Palmisano, L., Sarmati, L., Chiesi, A., et al. (2007). Sex issues in HIV-1-infected persons during highly active antiretroviral therapy: A systematic review. The Journal of Antimicrobial Chemotherapy, 60, 724–732. doi: 10.1093/jac/dkm302.PubMedCrossRefGoogle Scholar
  48. Nieuwkerk, P. T., & Oort, F. J. (2005). Self-reported adherence to antiretroviral therapy for HIV-1 infection and virologic treatment response: A meta-analysis. Journal of Acquired Immune Deficiency Syndromes, 38, 445–448. doi: 10.1097/01.qai.0000147522.34369.12.PubMedCrossRefGoogle Scholar
  49. Nieuwkerk, P. T., Sprangers, M. A. G., Burger, D. M., Hoetelmans, R. M. W., Hugen, P. W. H., Danner, S. A., et al. (2001). Limited patient adherence to highly active antiretroviral therapy for HIV-1 infection in an observational cohort study. Archives of Internal Medicine, 161, 1962–1968. doi: 10.1001/archinte.161.16.1962.PubMedCrossRefGoogle Scholar
  50. Paterson, D. L., Swindells, S., Mohr, J., Brester, M., Vergis, E. N., Squier, C., et al. (2000). Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Annals of Internal Medicine, 133, 21–30.PubMedGoogle Scholar
  51. Price, R. W., & Sidtis, J. J. (1993). AIDS dementia complex and HIV-1 infection: A view from the clinic. Brain Pathology (Zurich, Switzerland), 1, 155–162. doi: 10.1111/j.1750-3639.1991.tb00655.x.Google Scholar
  52. Rey, A. (1941). L’examen psychologique dans las cas d’encephalopathie traumatique. Archives de Psychologie, 28, 286–340.Google Scholar
  53. Roberts, K. J. (2000). Barriers to and facilitators of HIV-positive patients’ adherence to antiretroviral treatment regimens. AIDS Patient Care and STDs, 14, 155–168. doi: 10.1089/108729100317948.PubMedCrossRefGoogle Scholar
  54. Sacktor, N. (2002). The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. Journal of Neurovirology, 8, 115–121. doi: 10.1080/13550280290101094.PubMedCrossRefGoogle Scholar
  55. Sacktor, N., McDermott, M. P., Marder, K., Schifitto, G., Selnes, O. A., McArthur, J. C., et al. (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. Journal of Neurovirology, 8, 136–142. doi: 10.1080/13550280290101094.PubMedCrossRefGoogle Scholar
  56. Santos, G., Puga, A. M., & Medina, C. (2004). HAART, adherence, and cultural issues in the US Latino community. The AIDS Reader, 14, S26–S29.PubMedGoogle Scholar
  57. Selnes, O. A., Jacobson, L., Machado, A. M., Becker, J. T., Wesch, J., Miller, E. N., et al. (1991). Normative data for a brief neuropsychological screening battery. Multicenter AIDS cohort study. Perceptual and Motor Skills, 73, 539–550. doi: 10.2466/PMS.73.5.539-550.PubMedCrossRefGoogle Scholar
  58. Sidtis, J. J., Gatsonis, C., Price, R. W., Singer, E. J., Collier, A. C., Richman, D. D., et al. (1993). Zidovudine treatment of the AIDS dementia complex: Results of a placebo-controlled trial. Annals of Neurology, 33, 343–349. doi: 10.1002/ana.410330403.PubMedCrossRefGoogle Scholar
  59. Simoni, J. M., Kurth, A. E., Pearson, C. R., Pantalone, D. W., Merrill, J. O., & Frick, P. A. (2006). Self-report measures of antiretroviral therapy adherence: A review with recommendations for HIV research and clinical management. AIDS and Behavior, 10, 227–245. doi: 10.1007/s10461-006-9078-6.PubMedCrossRefGoogle Scholar
  60. Smith, A. (1982). Symbol digit modalities test (SDMT) manual (revised). Los Angeles, CA: Western Psychological Association.Google Scholar
  61. Solomon, T. M., & Halkitis, P. N. (2008). Cognitive executive functioning in relation to HIV medication adherence among gay, bisexual, and other men who have sex with men. AIDS and Behavior, 12, 68–77. doi: 10.1007/s10461-007-9273-0.PubMedCrossRefGoogle Scholar
  62. Starace, F., Ammassari, A., Trotta, M. P., Murri, R., De Longis, P., Izzo, C., et al. (2002). Depression is a risk factor for suboptimal adherence to highly active antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes, 31, S136–S139.PubMedGoogle Scholar
  63. Stuss, D. T., Stethem, L. L., & Pelchat, G. (1988). Three tests of attention and rapid information processing: An extension. The Clinical Neuropsychologist, 2, 246–250. doi: 10.1080/13854048808520107.CrossRefGoogle Scholar
  64. Tiffin, J. (1968). Purdue Pegboard: Examiner manual. Chicago, IL: Science Research Associates.Google Scholar
  65. Uldall, K. K., Palmer, N. B., Whetten, K., Mellins, C., & Mellins, C. (2004). Adherence in people living with HIV/AIDS, mental illness, and chemical dependency: A review of the literature. AIDS Care, 16, S71–S96. doi: 10.1080/09540120412331315277.PubMedCrossRefGoogle Scholar
  66. Wagner, G. J. (2002). Predictors of antiretroviral adherence as measured by self-report, electronic monitoring, and medication diaries. AIDS Patient Care and STDs, 16, 599–608. doi: 10.1089/108729102761882134.PubMedCrossRefGoogle Scholar
  67. Wagner, G. J. (2003). Does discontinuing the use of pill boxes to facilitate electronic monitoring impede adherence? International Journal of STD & AIDS, 14, 64–65. doi: 10.1258/095646203321043327.CrossRefGoogle Scholar
  68. Wagner, G. J., Kanouse, D. E., Koegel, P., & Sullivan, G. (2004). Correlates of HIV antiretroviral adherence in persons with serious mental illness. AIDS Care, 16, 501–506. doi: 10.1080/09540120410001683420.PubMedCrossRefGoogle Scholar
  69. Waldrop-Valverde, D., Ownby, R. L., Wilkie, F. L., Mack, A., Kumar, M., & Metsch, L. (2006). Neurocognitive aspects of medication adherence in HIV-positive injecting drug users. AIDS and Behavior, 10, 287–297. doi: 10.1007/s10461-005-9062-6.PubMedCrossRefGoogle Scholar
  70. Wechsler, D. (1981). Wechsler adult intelligence scale-revised. New York, NY: The Psychological Corporation.Google Scholar
  71. Wechsler, D. (1997). Wechsler adult intelligence scale manual (3rd ed.). New York, NY: The Psychological Corporation.Google Scholar
  72. Wetzel, L., & Boll, T. J. (1987). Short category test, booklet format. Los Angeles, CA: Western Psychological Association.Google Scholar
  73. Woods, S. P., Moran, L. M., Carey, C. L., Dawson, M. S., Iudicello, J. E., Gibson, S., et al. (2008). Prospective memory in HIV infection: is “remembering to remember” a unique predictor of self-reported medication management? Archives of Clinical Neuropsychology, 23, 257–270. doi: 10.1016/j.acn.2007.12.006.PubMedCrossRefGoogle Scholar
  74. World Health Organization. (2008). A global view of HIV infection: 2006. Retrieved December 7, 2008, from http://gamapserver.who.int/mapLibrary/Files/Maps/HIVPrevalenceGlobal.2006.png.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyOhio UniversityAthensUSA

Personalised recommendations