Journal of Behavioral Medicine

, Volume 31, Issue 6, pp 453–462 | Cite as

Revision and validation of the medication adherence self-efficacy scale (MASES) in hypertensive African Americans

  • Senaida FernandezEmail author
  • William Chaplin
  • Antoinette M. Schoenthaler
  • Gbenga OgedegbeEmail author


Study purpose was to revise and examine the validity of the Medication Adherence Self-Efficacy Scale (MASES) in an independent sample of 168 hypertensive African Americans: mean age 54 years (SD = 12.36); 86% female; 76% high school education or greater. Participants provided demographic information; completed the MASES, self-report and electronic measures of medication adherence at baseline and three months. Confirmatory (CFA), exploratory (EFA) factor analyses, and classical test theory (CTT) analyses suggested that MASES is unidimensional and internally reliable. Item response theory (IRT) analyses led to a revised 13-item version of the scale: MASES-R. EFA, CTT, and IRT results provide a foundation of support for MASES-R reliability and validity for African Americans with hypertension. Research examining MASES-R psychometric properties in other ethnic groups will improve generalizability of findings and utility of the scale across groups. The MASES-R is brief, quick to administer, and can capture useful data on adherence self-efficacy.


Scale validation African Americans Self-efficacy Medication adherence Hypertension 



Preparation of this manuscript was supported by Grants R01 HL 69408, R01 HL078566, to Dr. Ogedegbe, and R24 HL076857 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA. Dr. Fernandez was supported by minority supplement to grant R01HL078566-02S1 and the NIH LRP in Health Disparities Research. Dr. Schoenthaler was supported by grant F31HL081926. We are grateful to David Y. Berger and David Statman for their assistance with data cleaning for this project.


  1. Allegrante, J. P., & Marks, R. (2003). Self-efficacy in management of osteoarthritis. Rheumatic Diseases Clinics of North America, 29(4), 747–768. doi: 10.1016/S0889-857X(03)00060-7. vi-vii.PubMedCrossRefGoogle Scholar
  2. American Heart Association. (2006). High blood pressure statistics. New York.Google Scholar
  3. Bandura, A. (1977a). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 134–139. doi: 10.1037/0033-295X.84.2.191.CrossRefGoogle Scholar
  4. Bandura, A. (1997b). Self-efficacy: The exercise of control. New York: W.H. Freeman.Google Scholar
  5. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  6. Bosworth, H. B., Dudley, T., Olsen, M. K., Voils, C. I., Powers, B., Goldstein, M. K., et al. (2006). Racial differences in blood pressure control: Potential explanatory factors. American Journal of Medicine, 119(1), 70. e9-15.PubMedCrossRefGoogle Scholar
  7. Boutin-Foster, C., Ogedegbe, G. O., Ravenell, J. E., Robbins, L., & Charlson, M. E. (2007). Ascribing meaning to hypertension: A qualitative study among African Americans with uncontrolled hypertension. Ethnicity and Disease, 17(1), 29–34.PubMedGoogle Scholar
  8. Burt, V. L., Cutler, J. A., Higgins, M., Horan, M. J., Labarthe, D., & Whelton, P. (1995). Trends in the prevalence, awareness, treatment, control of hypertension in the adult US population. Data from the health examination surveys, 1960-1991. Hypertension, 26(1), 60–69.PubMedGoogle Scholar
  9. Catz, S. L., Kelly, J. A., Bogart, L. M., Benotsch, E. G., & McAuliffe, T. L. (2000). Patterns, correlates, and barriers to medication adherence among persons prescribed new treatments for HIV disease. Health Psychology, 19(2), 124–133. doi: 10.1037/0278-6133.19.2.124.PubMedCrossRefGoogle Scholar
  10. Centers for Disease Control, Prevention. (2005). Racial/ethnic disparities in prevalence, treatment, and control of hypertension: United States, NHANES 1999–2002. MMWR. Morbidity and Mortality Weekly Report, 54, 7–9.Google Scholar
  11. Choo, P. W., Rand, C. S., Inui, T. S., Lee, M. L., Cain, E., Cordeiro-Breault, M., et al. (1999). Validation of patient reports, automated pharmacy records, and pill counts with electronic monitoring of adherence to antihypertensive therapy. Medical Care, 37(9), 846–857. doi: 10.1097/00005650-199909000-00002.PubMedCrossRefGoogle Scholar
  12. Cudeck, R., & Browne, M. W. (1992). Constructing a covariance matrix that yields a specified minimizer and a specified minimum discrepancy function value. Psychometrika, 57, 357–369. doi: 10.1007/BF02295424.CrossRefGoogle Scholar
  13. Curtain, R. B., Walters, B. A. J., Schatell, D., et al. (2008). Self-efficacy and self-management behaviors in patients with chronic kidney disease. Advances in Chronic Kidney Disease, 15(2), 191–205. doi: 10.1053/j.ackd.2008.01.006.CrossRefGoogle Scholar
  14. Gerin, W., Tobin, J. N., Schwartz, J. E., Chaplin, W., Rieckmann, N., Davidson, K. W., et al. (2007). The medication Adherence and Blood Pressure Control (ABC) trial: A multi-site randomized controlled trial in a hypertensive, multi-cultural, economically disadvantaged population. Contemporary Clinical Trials, 28(4), 459–471. doi: 10.1016/j.cct.2007.01.003.PubMedCrossRefGoogle Scholar
  15. Gifford, A. L., Bormann, J. E., Shively, M. J., Wright, B. C., Richman, D. D., & Bozzette, S. A. (2000). Predictors of self-reported adherence and plasma HIV concentrations in patients on multidrug antiretroviral regimens. Journal of Acquired Immune Deficiency Syndromes, 23(5), 386–395.PubMedGoogle Scholar
  16. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.Google Scholar
  17. Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample-size to the stability of component patterns. Psychological Bulletin, 103(2), 265–275. doi: 10.1037/0033-2909.103.2.265.PubMedCrossRefGoogle Scholar
  18. Hertz, R. P., Unger, A. N., Cornell, J. A., & Saunders, E. (2005). Racial disparities in hypertension prevalence, awareness, and management. Archives of Internal Medicine, 165(18), 2098–2104. doi: 10.1001/archinte.165.18.2098.PubMedCrossRefGoogle Scholar
  19. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  20. Hugen, P. W. H., Langebeek, N., Burger, D. M., Zomer, B., van Leusen, R., Schuurman, R., et al. (2002). Assessment of adherence to HIV protease inhibitors: Comparison and combination of various methods, including MEMS (electronic monitoring), patient and nurse report, and therapeutic drug monitoring. Journal of Acquired Immune Deficiency Syndromes, 30, 324–334.PubMedGoogle Scholar
  21. Johnson, M. O., Chesney, M. A., Goldstein, R. B., Remien, R. H., Catz, S., Gore-Felton, C., et al. (2006). Positive provider interactions, adherence self-efficacy, and adherence to antiretroviral medications among HIV-infected adults: A mediation model. AIDS Patient Care and STDs, 20(4), 258–268. doi: 10.1089/apc.2006.20.258.PubMedCrossRefGoogle Scholar
  22. Kirscht, J. P., & Rosenstock, I. M. (1977). Patient adherence to antihypertensive medical regimens. Journal of Community Health, 3(2), 115–124. doi: 10.1007/BF01674233.PubMedCrossRefGoogle Scholar
  23. Liu, H., Golin, C. E., Miller, L. G., Hays, R. D., Beck, C. K., Sanandaji, S., et al. (2001). A comparison study of multiple measures of adherence to HIV protease inhibitors. Annals of Internal Medicine, 134(10), 968–977. see comment erratum appears in Ann Intern Med 2002 Jan 15;136(2):175.PubMedGoogle Scholar
  24. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  25. Lorig, K., Chastain, R. L., Ung, E., Shoor, S., & Holman, H. R. (1989). Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis and Rheumatism, 32(1), 37–44. doi: 10.1002/anr.1780320107.PubMedCrossRefGoogle Scholar
  26. Monane, M., Bohn, R. L., Gurwitz, J. H., Glynn, R. J., Levin, R., & Avorn, J. (1996). Compliance with antihypertensive therapy among elderly Medicaid enrollees: The roles of age, gender, and race. American Journal of Public Health, 86(12), 1805–1808.PubMedCrossRefGoogle Scholar
  27. Morisky, D. E., Green, L. W., & Levine, D. M. (1986). Concurrent and predictive validity of a self-reported measure of medication adherence. Medical Care, 24(1), 67–74. doi: 10.1097/00005650-198601000-00007.PubMedCrossRefGoogle Scholar
  28. Nakahara, R., Yoshiuchi, K., Kumano, H., Hara, Y., Suematsu, H., & Kuboki, T. (2006). Prospective study on influence of psychosocial factors on glycemic control in Japanese patients with type 2 diabetes. Psychosomatics, 47(3), 240–246. doi: 10.1176/appi.psy.47.3.240.PubMedCrossRefGoogle Scholar
  29. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.Google Scholar
  30. Ogedegbe, G., Mancuso, C. A., Allegrante, J. P., & Charlson, M. E. (2003). Development and evaluation of a medication adherence self-efficacy scale in hypertensive African-American patients. Journal of Clinical Epidemiology, 56(6), 520–529. doi: 10.1016/S0895-4356(03)00053-2.PubMedCrossRefGoogle Scholar
  31. Ogedegbe, G., Mancuso, C. A., & Allegrante, J. P. (2004). Expectations of blood pressure management in hypertensive African-American patients: A qualitative study. Journal of the National Medical Association, 96(4), 442–449.PubMedGoogle Scholar
  32. Ogedegbe, G. O., Schoenthaler, A. M., Richardson, T., Lewis, L., Belue, R., Espinosa, E., et al. (2007). An RCT of the effect of motivational interviewing on medication adherence in hypertensive African Americans: Rationale and design. Contemporary Clinical Trials, 28(2), 169–181. doi: 10.1016/j.cct.2006.04.002.PubMedCrossRefGoogle Scholar
  33. Ravenell, J. E., Johnson, W. E., Jr., & Whitaker, E. E. (2006). African-American men’s perceptions of health: A focus group study. Journal of the National Medical Association, 98(4), 544–550.PubMedGoogle Scholar
  34. Samejima F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monographs 34(4, Pt.2, Whole No. 17).Google Scholar
  35. SPSS. (2004). Statistical Package for Social Sciences, version 13.0.Google Scholar
  36. Strecher, V. J., et al. (1986). The role of self-efficacy in achieving health behavior change. Health Education Quarterly, 13(1), 73–92.PubMedGoogle Scholar
  37. Tabachnik, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Needham Heights, MA: Pearson Education Company.Google Scholar
  38. Thissen, D. (2003). Multilog User’s Guide. Lincolnwood, IL: Scientific Software International Incorporated.Google Scholar
  39. World Health Organization. (2003). Adherence to long-term therapies: Evidence for action. Geneva: World Health Organization. xv, 198 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.New York University School of MedicineNew YorkUSA
  2. 2.St. John’s UniversityQueensUSA
  3. 3.New York University School of MedicineNew YorkUSA

Personalised recommendations