Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 51, Issue 5, pp 329–340 | Cite as

Effect of hypoxia on mitochondrial enzymes and ultrastructure in the brain cortex of rats with different tolerance to oxygen shortage

  • Galina D. MironovaEmail author
  • Lubov L. Pavlik
  • Yulia I. Kirova
  • Natalia V. Belosludtseva
  • Alexey A. Mosentsov
  • Natalya V. Khmil
  • Elita L. Germanova
  • Ludmila D. Lukyanova
Article

Abstract

The mitochondrial structure and the contents of subunits (NDUFV2, SDHA, Cyt b, COX1) of mitochondrial respiratory complexes I–IV as well as of the hypoxia-inducible factor (HIF-1α) in the brain cortex (BC) of rats with high resistance (HR) and low resistance (LR) to hypoxia were studied for the first time depending on the severity of hypoxia. Different regimes of 30-min hypobaric hypoxia (pO2 14, 10, and 8%) were used. It was found that cortical mitochondria responded to 30-min hypobaric hypoxia of different severity with typical and progressing changes in mitochondrial structure and function of mitochondrial enzymes. Under 14 and 10% hypoxia, animals developed compensatory structural and metabolic responses aimed at supporting the cell energy homeostasis. Consequently, these hypoxia regimes can be used for treatment in pressure chambers. At the same time, decreasing the oxygen concentration in the inhaled air to 8% led to the appearance of destructive processes in brain mitochondria. The features of mitochondrial ultrastructure and the function of respiratory enzymes in the BC of HR and LR rats exposed to normoxic and hypoxic conditions suggest that the two types of animals had two essentially distinct functional and metabolic patterns determined by different efficiency of the energy apparatus. The development of adaptive and destructive responses involved different metabolic pathways of the oxidation of energy substrates and different efficiency of the functioning of mitochondrial respiratory carriers.

Keywords

Hypoxia Mitochondrial ultrastructure Respiratory chain complexes Hypoxia-inducible factor 1α Cytochrome b Resistance to hypoxia 

Abbreviations

BC

brain cortex

HBH

acute hypobaric hypoxia

LR

low-resistance rats

HR

high-resistance rats

MC

mitochondrial enzyme catalytic subunits

NDUFV2

NADH dehydrogenase [ubiquinone] flavoprotein 2

SDHA

flavochrome subunit A of succinate dehydrogenase

COX1

cytochrome c oxidase subunit

HIF-1α

hypoxia-inducible factor 1 alpha subunit

RDU

relative densitometric units

Notes

Acknowledgements

The work was supported by the Russian Science Foundation (RSF) (project No. 16-15-00157 to G.D.). The procedure of animal treatment and the work of technicians were supported by the Russian Foundation for Basic Research (RFBR) (project No. 18-34-00297mol_a to N.B.).

References

  1. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592(5):692–702.  https://doi.org/10.1002/1873-3468.12964 CrossRefPubMedGoogle Scholar
  2. Appaix F, Kuznetsov AV, Usson Y, Kay L, Andrienko T, Olivares J, Kaambre T, Sikk P, Margreiter R, Saks V (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88:175–190.  https://doi.org/10.1113/eph8802511 CrossRefPubMedGoogle Scholar
  3. Berezovsky (1978) In: Berezovsky (ed) Hypoxia: individual sensitivity and reactivity. Naukova Dumka, KievGoogle Scholar
  4. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22(310):79–99.  https://doi.org/10.1146/annurev.cellbio.22.010305.104638 CrossRefPubMedGoogle Scholar
  5. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement and mitophagy in neurodegenerative diseases. Hum Mo Genet 18:R169–R176.  https://doi.org/10.1093/hmg/ddp326 CrossRefGoogle Scholar
  6. Chen HA, Chomyn A, Chan DC (2005) Disruption of fusion resulting mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192CrossRefGoogle Scholar
  7. Chen TT, Maevsky EI, Uchitel ML (2015) Maintenance of homeostasis in the aging hypothalamus: the central and peripheral roles of succinate. Front Endocrinol 6(7):1–11.  https://doi.org/10.3389/fendo.2015.00007 CrossRefGoogle Scholar
  8. Chilov D, Camenisch G, Kvietikova I, Ziegler U, Gassmann M, Wenger RH (1999) Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1a. J Cell Sci 11:1203–1212 WOS:000080141300009Google Scholar
  9. Dayala D, Martin SM, Owens KM, Aykin-Burns N, Zhu Y, Boominathan A, Pain D, Limoli CL, Goswami PC, Domann FE, Spitz DR (2009) Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation. Radiat Res 172(6):737–745.  https://doi.org/10.1667/RR1617.1 CrossRefGoogle Scholar
  10. Devin A, Rigoulet M (2007) Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells. Am J Physiol Cell Physiol 292(1):52–58.  https://doi.org/10.1152/ajpcell.00208.2006 CrossRefGoogle Scholar
  11. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(1):S96–S10.  https://doi.org/10.2337/diabetes.53.2007.S96 CrossRefPubMedGoogle Scholar
  12. Dudchenko A, Lukyanova LD (1996) Effects of adaptation to periodic hypoxia on kinetic parameters of respiratory chain enzymes in rat brain. Bull Exp Biol Med 121(3):232–235.  https://doi.org/10.1007/BF02446754 CrossRefGoogle Scholar
  13. Dudchenko AM, Chernobaeva GN, Belousova VV, Vlasova IG, Lukyanova LD (1993) Bioenergetic parameters of the brain in rats with different resistance to hypoxia. Bull Exp Biol Med 115(3):263–267.  https://doi.org/10.1007/BF00836406 CrossRefGoogle Scholar
  14. Feldkamp T, Kribben A, Roeser N, Senter R, Kemner S, Venkatachalam M, Nissim I, Weinberg JM (2004) Preservation of complex I function during hypoxia- reoxygenation-induced mitochondrial injury in proximal tubules. Am J Physiol Ren Physiol 286(4):F749–F759.  https://doi.org/10.1152/ajprenal.00276.2003 CrossRefGoogle Scholar
  15. Gomes LC, Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833:205–212.  https://doi.org/10.1016/j.bbamcr.2012.02.012 CrossRefPubMedGoogle Scholar
  16. Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30(2):269–297.  https://doi.org/10.1083/jcb.30.2.269 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hackenbrock CR (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 37(2):345–369.  https://doi.org/10.1083/jcb.37.2.345 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hochachka PW, Somero GN (2002) Biochemical adaptation - mechanism and process in physiological evolution. Oxford University Press, New York, p 480Google Scholar
  19. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89:153–159.  https://doi.org/10.1161/hh1401.093440 CrossRefPubMedGoogle Scholar
  20. Karbowsky M, Yorele RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10(8):870–880.  https://doi.org/10.1038/sj.cdd.4401260 CrossRefGoogle Scholar
  21. Kondrashova MN (1993) The formation and utilization of succinate in mitochondria as a control mechanism of energization and energy state of tissue. – in. Chance B. (Ed.). Biological and biochemical oscillators. Acad. Press. New York. p. 373–397Google Scholar
  22. Kondrashova MN, Zakharchenko M, Khunderyakova N (2009) Preservation of the in vivo state of mitochondrial network for ex vivo physiological study of mitochondria. Int J Biochem Cell Biol 41:2036–2050CrossRefGoogle Scholar
  23. Livanova LM, Sarkisova KY, Lukyanova LD, Kolomeitseva IA (1992) Respiration and oxidative phosphorylation of the mitochondria of the brain of rats with various types of behavior. Neurosci Behav Physiol 22(6):519–525CrossRefGoogle Scholar
  24. Lukyanova LD (2013) Mitochondrial signaling in hypoxia. OJEMD 3:20–32.  https://doi.org/10.4236/ojemd.2013.32A004 CrossRefGoogle Scholar
  25. Lukyanova LD, Kirova YI (2015) Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci 9:1–15.  https://doi.org/10.3389/fnins.2015.00320 CrossRefGoogle Scholar
  26. Lukyanova LD, Chernobaeva GN, Romanova VE (1995) Effects of adaptation to intermittent hypoxia on oxidative phosphorylation in brain mitochondria of rats with different sensitivities toward oxygen deficiency. Bull Exp Biol Med 12:1189–1192.  https://doi.org/10.1007/BF02445567 CrossRefGoogle Scholar
  27. Lukyanova LD, Germanova EL, Kopaladze RA (2009a) Development of resistance of an organism under various conditions of hypoxic preconditioning: role of the hypoxic period and reoxygenation. Bull Exp Biol Med 147(4):400–404.  https://doi.org/10.1007/s10517-009-0529-8 CrossRefPubMedGoogle Scholar
  28. Lukyanova LD, Dudchenko AM, Germanova EL, Tsybina TA, Kapaladse RA, Ehrenbourg IV, Tkatchouk EN (2009b) In: Xi L, Serebrovskaya T (eds) Intermitten hypoxia: from molecular mechanisms to clinical applications. Nova Science, USA, pp 423–450Google Scholar
  29. Maciejczyk M, Mikoluc B, Pietrucha B, Heropolitanska-Pliszka E, Pac M, Motkowski R, Car H (2017) Oxidative stress, mitochondrial abnormalities and antioxidant defense in ataxia-telangiectasia, bloom syndrome and Nijmegen breakage syndrome. Redox Biol 11:375–383CrossRefGoogle Scholar
  30. Maklashinas E, Sher E, Zhou H-Z, Gray M (2002) Effect of anoxia/reperfusion on the reversible active/de-active transition of complex I in rat hear. BBA-Bioenergetics 1556(1):6–12.  https://doi.org/10.1016/S0005-2728(02)00280-3 CrossRefGoogle Scholar
  31. Mcillwain H, Rodnight R (1962) Practical neurochemistry. - London: J. & A. Churchill. p. 210Google Scholar
  32. Mironova GD, Shigaeva MI, Gritsenko EN, Murzaeva SV, Gorbacheva OS, Germanova EL, Lukyanova LD (2010) Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia. J Bioenerg Biomembr 42(6):473–481CrossRefGoogle Scholar
  33. Nowak G, Clifton G, Bakajsova D (2008) Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. J Pharmacol Exp Ther 324(3):1155–1162CrossRefGoogle Scholar
  34. Rana A, Oliveira MP, Khamoui AV, Aparicio R, Rera M, Rossiter HB, Walker DW (2017) Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 8(1):448.  https://doi.org/10.1038/s41467-017-00525-4 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rybakova A, Makarova M (2015) Methods of euthanasia of laboratory animals, in accordance with European directive 2010/63. International Bulletin of Veterinary 2:96–104Google Scholar
  36. Shutt T, Geoffrion M, Milne R, McBride HM (2012) The intracellular redox state is a key determinant of mitochondrial fusion. EMBO Rep 10:909–915.  https://doi.org/10.1038/embor.2012.128 CrossRefGoogle Scholar
  37. Singer TP, Kearney EB (1957) Methods of biochemical analysis. New York: Interscience, V. 4. p. 312Google Scholar
  38. Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–1107CrossRefGoogle Scholar
  39. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress–induced mitochondrial hyperfusion. EMBO J 28(11):1589–1600.  https://doi.org/10.1038/emboj.2009.89 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6):1–16.  https://doi.org/10.1101/cshperspect.a011072 CrossRefGoogle Scholar
  41. Vik SB, Hatefi Y (1981) Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase (active site/mechanisms of succinate oxidation and fumarate reduction). Proc Natl Acad Sci U S A 78(11):6749–6753.  https://doi.org/10.1073/pnas.78.11.6749 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Weakley BS (1972) A beginners handbook in biological electron microscopy. Churchill Livingstone. Edinburg and London. 228 р. ISBN-10: 9780443009082Google Scholar
  43. Wheaton W, Chandel N (2011) Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 300(3):C385–C393.  https://doi.org/10.1152/ajpcell.00485.2010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Galina D. Mironova
    • 1
    • 2
    Email author
  • Lubov L. Pavlik
    • 1
    • 2
  • Yulia I. Kirova
    • 3
  • Natalia V. Belosludtseva
    • 1
    • 2
  • Alexey A. Mosentsov
    • 1
  • Natalya V. Khmil
    • 1
  • Elita L. Germanova
    • 3
  • Ludmila D. Lukyanova
    • 3
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.Pushchino State Institute of Natural SciencesPushchinoRussia
  3. 3.Institute of General Pathology and PathophysiologyMoscowRussia

Personalised recommendations