Advertisement

Polymorphisms in plastoquinol oxidase (PTOX) from Arabidopsis accessions indicate SNP-induced structural variants associated with altitude and rainfall

  • Karine Leitão Lima Thiers
  • João Hermínio Martins da Silva
  • Geraldo Rodrigues Sartori
  • Clesivan Pereira dos Santos
  • Kátia Daniella da Cruz Saraiva
  • André Luiz Maia Roque
  • Birgit Arnholdt-Schmitt
  • José Hélio Costa
Article
  • 33 Downloads

Abstract

Plant plastoquinol oxidase (PTOX) is a chloroplast oxidoreductase involved in carotenoid biosynthesis, chlororespiration, and response to environmental stresses. The present study aimed to gain insight of the potential role of nucleotide/amino acid changes linked to environmental adaptation in PTOX gene/protein from Arabidopsis thaliana accessions. SNPs in the single-copy PTOX gene were identified in 1190 accessions of Arabidopsis using the Columbia-0 PTOX as a reference. The identified SNPs were correlated with geographical distribution of the accessions according to altitude, climate, and rainfall. Among the 32 identified SNPs in the coding region of the PTOX gene, 16 of these were characterized as non-synonymous SNPs (in which an AA is altered). A higher incidence of AA changes occurred in the mature protein at positions 78 (31%), 81 (31.4%), and 323 (49.9%). Three-dimensional structure prediction indicated that the AA change at position 323 (D323N) leads to a PTOX structure with the most favorable interaction with the substrate plastoquinol, when compared with the reference PTOX structure (Columbia-0). Molecular docking analysis suggested that the most favorable D323N PTOX-plastoquinol interaction is due to a better enzyme-substrate binding affinity. The molecular dynamics revealed that plastoquinol should be more stable in complex with D323N PTOX, likely due a restraint mechanism in this structure that stabilize plastoquinol inside of the reaction center. The integrated analysis made from accession geographical distribution and PTOX SNPs indicated that AA changes in PTOX are related to altitude and rainfall, potentially due to an adaptive positive environmental selection.

Keywords

SNPs Plant model Immutans Thale cress Environmental conditions Plastid terminal oxidase 

Notes

Acknowledgements

We are grateful to the Weigel laboratory at the Max Planck Institute for Developmental Biology (http://www.weigelworld.org) for providing us with the genomic data that made advancements in the present research possible. The Brazilian authors would also like to thank CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council of Technological and Scientific Development), and FUNCAP (Ceara Research Support Foundation) for financial support. BAS is thankful to the University of Évora for continuous invitations as a Coordinating Investigator since 2008 to prolong the running of the established EU Marie Curie Chair, financed initially by the European Commission from 2005 to 2008. We also thank Dr. Daniel Ferreira Feijó for his helpful suggestions in reviewing the final article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10863_2018_9784_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)
10863_2018_9784_MOESM2_ESM.docx (18 kb)
ESM 2 (DOCX 18 kb)
10863_2018_9784_MOESM3_ESM.docx (30 kb)
ESM 3 (DOCX 29 kb)
10863_2018_9784_MOESM4_ESM.docx (6.5 mb)
ESM 4 (DOCX 6702 kb)
10863_2018_9784_MOESM5_ESM.docx (1.2 mb)
ESM 5 (DOCX 1177 kb)
10863_2018_9784_MOESM6_ESM.docx (11.4 mb)
ESM 6 (DOCX 11686 kb)
10863_2018_9784_MOESM7_ESM.docx (1.6 mb)
ESM 7 (DOCX 1592 kb)
10863_2018_9784_MOESM8_ESM.docx (13.7 mb)
ESM 8 (DOCX 14007 kb)
10863_2018_9784_MOESM9_ESM.docx (13.4 mb)
ESM 9 (DOCX 13716 kb)
10863_2018_9784_MOESM10_ESM.docx (14.3 mb)
ESM 10 (DOCX 14646 kb)

References

  1. © Google Inc. (2018) (“Google”), located at 1600 Amphitheatre Parkway, mountain view, CA 94043, United StatesGoogle Scholar
  2. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98:10037–10041CrossRefGoogle Scholar
  3. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963CrossRefGoogle Scholar
  4. Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36CrossRefGoogle Scholar
  5. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68CrossRefGoogle Scholar
  6. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko J, Luo R, Mermelstein RD, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AMBER 2018. University of California, San FranciscoGoogle Scholar
  7. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr 66:12–21CrossRefGoogle Scholar
  8. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631CrossRefGoogle Scholar
  9. Den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124CrossRefGoogle Scholar
  10. Dias J, Pimenta JA, Medri ME, Boeger MRT, Freitas CT (2007) Physiological aspects of Sun and shade leaves of Lithraea molleoides (Vell) Engl (Anacardiaceae). Braz Arch Biol Technol 50:91–99CrossRefGoogle Scholar
  11. Díaz M, de Haro V, Muñoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant, Cell and Environment 30:1578–1585CrossRefGoogle Scholar
  12. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667CrossRefGoogle Scholar
  13. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984CrossRefGoogle Scholar
  14. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LGA (1995) Smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  15. Finnegan PM, Umbach AL, Wilce JA (2003) Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes. FEBS Lett 555:425–430CrossRefGoogle Scholar
  16. Fisher N, Rich PR (2000) A motif for Quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–1162CrossRefGoogle Scholar
  17. Fu A, Park S, Rodermel S (2005) Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to exon 8. J Biol Chem 280:42489–42496CrossRefGoogle Scholar
  18. Fu A, Aluru M, Rodermel SR (2009) Conserved active site sequences in arabidopsis plastid terminal oxidase (PTOX) in vitro and in planta mutagenesis studies. J Biol Chem 284:22625–22632CrossRefGoogle Scholar
  19. Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Rätsch G, Mott R (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–427CrossRefGoogle Scholar
  20. Gepstein S, Horwitz BA (1995) Impact of Arabidopsis research on plant biotechnology: biotechnology advances. Biotechnol Adv 13:353–364CrossRefGoogle Scholar
  21. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:695–699CrossRefGoogle Scholar
  22. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 4:1–17CrossRefGoogle Scholar
  23. Henry R, Edwards K (2009) New tools for single nucleotide polymorphism (SNP) discovery and analysis accelerating plant biotechnology. Plant Biotechnol J 7:311CrossRefGoogle Scholar
  24. James AM, Carmenza M, Koushik K, Lauren W, Kevin EH, Carlos S (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713CrossRefGoogle Scholar
  25. Joët T, Genty B, Josse EM, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630CrossRefGoogle Scholar
  26. Johnson GN, Stepien P (2016) Plastid terminal oxidase as a route to improving plant stress tolerance: known knowns and known unknowns. Plant Cell Physiol 57:1387–1396PubMedGoogle Scholar
  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  28. Josse EM, Simkin AJ, Gaffé J, Labouré AM, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436CrossRefGoogle Scholar
  29. Josse EM, Alcaraz JP, Labouré AM, Kuntz M (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794CrossRefGoogle Scholar
  30. Kambakam S, Bhattacharjee U, Petrich J, Rodermel S (2016) PTOX mediates novel pathways of Electron transport in Etioplasts of Arabidopsis. Mol Plant 9:1240–1259CrossRefGoogle Scholar
  31. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858CrossRefGoogle Scholar
  32. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:526–531CrossRefGoogle Scholar
  33. Kofidis G, Bosabalidis AM, Moustakas M (2003) Contemporary seasonal and altitudinal variations of leaf structural features in oregano (Origanum vulgare L). Ann Bot 92:635–645CrossRefGoogle Scholar
  34. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  35. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  36. Kuntz M (2004) Plastid terminal oxidase and its biological significance. Planta 218:896–899CrossRefGoogle Scholar
  37. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  38. Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21:5512–5529CrossRefGoogle Scholar
  39. Lennon AM, Prommeenate P, Nixon PJ (2003) Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids. Planta 218:254–260CrossRefGoogle Scholar
  40. Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180CrossRefGoogle Scholar
  41. Luo Y, Widmer A, Karrenberg S (2014) The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Heredity 114:220–228CrossRefGoogle Scholar
  42. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their Impacto n plant breeding. International Journal of Plant Genomics 2012:1–11Google Scholar
  43. McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NP (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta Bioenerg 1807:954–967CrossRefGoogle Scholar
  44. Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol 157:1942–1955CrossRefGoogle Scholar
  45. Meyerowitz EM (1987) Arabidopsis thaliana. Annu Rev Genet 21:93–111CrossRefGoogle Scholar
  46. Morais RR, Gonçalves JFC, Júnior UMS, Dünisch O, Santos ALW (2007) Chloroplastid pigment contents and chlorophyll a fluorescence in amazonian tropical three species. Sociedade de Investigações Florestais 31:959–966Google Scholar
  47. Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA (2015) The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu Rev Plant Biol 66:49–74CrossRefGoogle Scholar
  48. Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Plant J 63:458–468CrossRefGoogle Scholar
  49. Olsson MHM, Chresten RS, Michal R, Jan HJ (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537CrossRefGoogle Scholar
  50. Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant, Cell and Environment 29:1463–1470CrossRefGoogle Scholar
  51. Rajsnerová P, Klem K, Holub P, Novotná K, Večeřová K, Kozáčiková M, Rivas-Ubach A, Sardans J, Marek MV, Peñuelas J, Urban O (2015) Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiol 35:47–60CrossRefGoogle Scholar
  52. Roe DR, Cheatham TE (2013) III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095CrossRefGoogle Scholar
  53. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738CrossRefGoogle Scholar
  54. Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant, Cell and Environment 30:1041–1051CrossRefGoogle Scholar
  55. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  56. Schnell DJ (1998) Protein targeting to the thylakoid membrane. Annu Rev Plant Physiol Plant Mol Biol 49:97–126CrossRefGoogle Scholar
  57. Schrödinger LLC. (2017) The PyMOL Molecular Graphics System, Version 18Google Scholar
  58. Schrödinger Release (2017) MS Jaguar, Schrödinger, LLC, New York, NY, 2017 Maestro Version 111012, MMshare Version 37012Google Scholar
  59. Simkin AJ, Zhu C, Kuntz M, Sandmann G (2003a) Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves. J Plant Physiol 160:439–443CrossRefGoogle Scholar
  60. Simkin AJ, Labouré AM, Kuntz M, Sandmann G (2003b) Comparison of carotenoid content, gene expression and enzyme levels in tomato (Lycopersicon esculentum) leaves. Zeitschrift fur Naturforschung - Section C. J Biosci 58:371–380Google Scholar
  61. Steccanela V, Hansson M, Jensen PE (2015) Linking chlorophyll biosynthesis to a dynamic plastoquinone pool. Plant Physiol Biochem 97:207–216CrossRefGoogle Scholar
  62. Sun X, Wen T (2011) Physiological roles of plastid terminal oxidase in plant stress responses. J Biosci 36:951–956CrossRefGoogle Scholar
  63. The 1001 Genomes Consortium (2016) 1,135 genomes revel the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491CrossRefGoogle Scholar
  64. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  65. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech 2:195–212CrossRefGoogle Scholar
  66. Thorisson GA, Stein LD (2003) The SNP consortium website: past, present and future. Nucleic Acid Research 31:124–127CrossRefGoogle Scholar
  67. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function. efficient optimization and multithreading Journal of Computational Chemistry 31:455–461Google Scholar
  68. Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G (2012) Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim Biophys Acta Bioenerg 1817:2140–2148CrossRefGoogle Scholar
  69. Tyagi A, Yadav A, Mani Tripathi A, Roy S (2016) High light intensity plays a major role in emergence of population level variation in Arabidopsis thaliana along na altitudinal gradient. Sci Rep 6:1–13CrossRefGoogle Scholar
  70. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau FY (2011) R.E.D. server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39:W511–W517CrossRefGoogle Scholar
  71. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  72. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247260CrossRefGoogle Scholar
  73. Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55CrossRefGoogle Scholar
  74. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8CrossRefGoogle Scholar
  75. Zeller G, Clark RM, Schneeberger K, Bohlen A, Weigel D, Rätsch G (2008) Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Res 18:918–929CrossRefGoogle Scholar
  76. Zhang Y (2008) I-TASSER server for protein 3D structure prediction BMC. Bioinformatics 9:1–8Google Scholar
  77. Zhang H, Zhong H, Wang J, Sui X, Xu N (2016) Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis maxim and Physocarpus opulifolius “Diabolo”. PeerJ 4:1–23Google Scholar
  78. Zhou M, Callaham JB, Reyes M, Stasiak M, Riva A, Zupanska AK, Dixon MA, Paul AL, Ferl RJ (2017) Dissecting low atmospheric pressure stress: transcriptome responses to the components of Hypobaria in Arabidopsis. Front Plant Sci 8:1–13Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Karine Leitão Lima Thiers
    • 1
  • João Hermínio Martins da Silva
    • 2
  • Geraldo Rodrigues Sartori
    • 2
  • Clesivan Pereira dos Santos
    • 1
  • Kátia Daniella da Cruz Saraiva
    • 1
    • 3
  • André Luiz Maia Roque
    • 1
  • Birgit Arnholdt-Schmitt
    • 1
    • 4
    • 5
  • José Hélio Costa
    • 1
  1. 1.Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular BiologyFederal University of CearaFortalezaBrazil
  2. 2.Computational Modeling Group – FIOCRUZ – CEFortalezaBrazil
  3. 3.Federal Institute of Education, Science and TechnologyParaíbaBrazil
  4. 4.Functional Cell Reprogramming and Organism Plasticity (FunCrop), EU Marie Curie Chair, ICAAMUniversity of ÉvoraÉvoraPortugal
  5. 5.Science and Technology Park Alentejo (PACT)ÉvoraPortugal

Personalised recommendations