Advertisement

Neural plasticity in developing and adult olfactory pathways – focus on the human olfactory bulb

  • C. Huart
  • Ph Rombaux
  • T. HummelEmail author
Mini-Review

Abstract

The topic of human adult neural plasticity and neurogenesis is of great interest for medical and scientific community, but it is also largely debated. In the last years, an increasing interest has been paid to the olfactory system, and particularly to the plasticity of the olfactory bulb (OB). While the molecular/cellular mechanisms underlying OB plasticity remain a matter of debate, measurements of the OB using magnetic resonance imaging clearly indicate that it is a highly plastic structure. In this review, we present results regarding the plasticity of the human adult olfactory system.

Keywords

Smell Anosmia Nose Plasticity Neuroregeneration 

Notes

References

  1. Altundag A, Salihoglu M, Tekeli H, Saglam M, Cayonu M, Hummel T (2014) Lateralized differences in olfactory function and olfactory bulb volume relate to nasal septum deviation. J Craniofac Surg 25:359–362.  https://doi.org/10.1097/SCS.0000000000000617 CrossRefPubMedGoogle Scholar
  2. Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT (2008) The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol 73:357–365.  https://doi.org/10.1101/sqb.2008.73.019 CrossRefPubMedGoogle Scholar
  3. Askar SM et al (2015) Ipsilateral reduced olfactory bulb volume in patients with unilateral nasal obstruction. Otolaryngolo Head Neck Surg 152:959–963.  https://doi.org/10.1177/0194599815573196 CrossRefGoogle Scholar
  4. Attems J, Lintner F, Jellinger KA (2005) Olfactory involvement in aging and Alzheimer's disease: an autopsy study. J Alzheimers Dis 7:149–157 discussion 173-180CrossRefGoogle Scholar
  5. Benson TE, Ryugo DK, Hinds JW (1984) Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis. J Neurosci 4:638–653CrossRefGoogle Scholar
  6. Bergmann O et al (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639.  https://doi.org/10.1016/j.neuron.2012.03.030 CrossRefPubMedGoogle Scholar
  7. Bergmann O, Spalding KL, Frisen J (2015) Adult Neurogenesis in Humans. Cold Spring Harb Perspect Biol 7:a018994.  https://doi.org/10.1101/cshperspect.a018994 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhatnagar KP, Kennedy RC, Baron G, Greenberg RA (1987) Number of mitral cells and the bulb volume in the aging human olfactory bulb: a quantitative morphological study. Anat Rec 218:73–87.  https://doi.org/10.1002/ar.1092180112 CrossRefPubMedGoogle Scholar
  9. Breton-Provencher V, Bakhshetyan K, Hardy D, Bamman RR, Cavarretta F, Snapyan M, Côté D, Migliore M, Saghatelyan A (2016) Principal cell activity induces spine relocation of adult-born internuerons in the olfactory bulb. Nat Commun 7:12659CrossRefGoogle Scholar
  10. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedPubMedCentralGoogle Scholar
  11. Burmeister HP, Bitter T, Baltzer PA, Dietzel M, Guntinas-Lichius O, Gudziol H, Kaiser WA (2011a) Olfactory bulb ventricles as a frequent finding--a myth or reality? Evaluation using high resolution 3 tesla magnetic resonance imaging. Neuroscience 172:547–553.  https://doi.org/10.1016/j.neuroscience.2010.10.068 CrossRefPubMedGoogle Scholar
  12. Burmeister HP, Baltzer PA, Mölstein C, Bitter T, Gudziol H, Dietzel M, Guntinas-Lichius O, Kaiser WA (2011b) Reproducibility and repaetability of volumetric measurements for olfactory bulb volumetry: which method is appropriate? An update using 3 Tesla MRI. Acad Radiol 18(7):842–849.  https://doi.org/10.1016/j.arca.2011.02.018 CrossRefPubMedGoogle Scholar
  13. Burmeister HP et al (2012) Imaging of lamination patterns of the adult human olfactory bulb and tract: in vitro comparison of standard- and high-resolution 3T MRI, and MR microscopy at 9.4 T. NeuroImage 60:1662–1670.  https://doi.org/10.1016/j.neuroimage.2012.01.101 CrossRefPubMedGoogle Scholar
  14. Buschhuter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T (2008) Correlation between olfactory bulb volume and olfactory function. NeuroImage 42:498–502.  https://doi.org/10.1016/j.neuroimage.2008.05.004 CrossRefPubMedGoogle Scholar
  15. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Current Biol 12:606–608CrossRefGoogle Scholar
  16. Chen Y, Getchell TV, Sparks DL, Getchell ML (1993) Patterns of adrenergic and peptidergic innervation in human olfactory mucosa: age-related trends. J Comp Neurol 334:104–116.  https://doi.org/10.1002/cne.903340109 CrossRefPubMedGoogle Scholar
  17. Cleland TA, Linster C (2005) Computation in the olfactory system. Chem Senses 30:801–813.  https://doi.org/10.1093/chemse/bji072 CrossRefPubMedGoogle Scholar
  18. Conley DB, Robinson AM, Shinners MJ, Kern RC (2003) Age-related olfactory dysfunction: cellular and molecular characterization in the rat. Am J Rhinol 17:169–175CrossRefGoogle Scholar
  19. Crasto C, Marenco L, Miller P, Shepherd G (2002) Olfactory receptor database: A metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res:354–360Google Scholar
  20. Croy I, Negoias S, Symmank A, Schellong J, Joraschky P, Hummel T (2013) Reduced olfactory bulb volume in adults with a history of childhood maltreatment. Chem Senses 38:679–684.  https://doi.org/10.1093/chemse/bjt037 CrossRefPubMedGoogle Scholar
  21. Cummings DM, Brunjes PC (1997) The effects of variable periods of functional deprivation on olfactory bulb development in rats. Exp Neurol 148:360–366.  https://doi.org/10.1006/exnr.1997.6660 CrossRefPubMedGoogle Scholar
  22. Curtis MA et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249.  https://doi.org/10.1126/science.1136281 CrossRefPubMedGoogle Scholar
  23. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716CrossRefGoogle Scholar
  24. Duprez TP, Rombaux P (2010) Imaging the olfactory tract (cranial nerve #1). Eur J Radiol 74:288–298.  https://doi.org/10.1016/j.ejrad.2009.05.065 CrossRefPubMedGoogle Scholar
  25. Ennis M, Holy TE (2015) Anatomy and neurobiology of the Main and accessory olfactory bulbs. In: Doty RL (ed) Handbook of olfaction and gustation. John Wiley & Sons, pp 157-182Google Scholar
  26. Goktas O, Cao Van H, Fleiner F, Lacroix JS, Landis BN (2010) Chemosensory function in Wegener's granulomatosis: a preliminary report. Eur Arch Otorhinolaryngol 267:1089–1093.  https://doi.org/10.1007/s00405-009-1184-4 CrossRefPubMedGoogle Scholar
  27. Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, Galli R, Verdugo JMG, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445CrossRefGoogle Scholar
  28. Gudziol V, Buschhuter D, Abolmaali N, Gerber J, Rombaux P, Hummel T (2009) Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis--a longitudinal study. Brain 132:3096–3101.  https://doi.org/10.1093/brain/awp243 CrossRefPubMedGoogle Scholar
  29. Guerrero-Cazares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, Garcia-Verdugo JM, Quinones-Hinojosa A (2011) Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol 519:1165–1180.  https://doi.org/10.1002/cne.22566 CrossRefPubMedGoogle Scholar
  30. Haehner A, Rodewald A, Gerber JC, Hummel T (2008) Correlation of olfactory function with changes in the volume of the human olfactory bulb. Arch of Otolaryngol Head Neck Surg 134:621–624.  https://doi.org/10.1001/archotol.134.6.621 CrossRefGoogle Scholar
  31. Hardy D, Saghatelyan A (2017) Different forms of structural plasticity in the adult olfactory bulb. Neurogenesis 4(1):e1301850.  https://doi.org/10.1080/23262133.2017.1301850 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hoogland PV, van den Berg R, Huisman E (2003) Misrouted olfactory fibres and ectopic olfactory glomeruli in normal humans and in Parkinson and Alzheimer patients. Neuropathol Appl Neurobiol 29:303–311CrossRefGoogle Scholar
  33. Hummel T, Heilmann S, Murphy C (2002) Age-related changes of chemosensory function. In: Rouby C, Schaal B, Dubois D, Gervais R, Holley A (eds) Olfaction, taste, and cognition. Cambridge University Press, New York, pp 441–456CrossRefGoogle Scholar
  34. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the "Sniffin' sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243.  https://doi.org/10.1007/s00405-006-0173-0 CrossRefPubMedGoogle Scholar
  35. Hummel T, Haehner A, Hummel C, Croy I, Iannilli E (2013a) Lateralized differences in olfactory bulb volume relate to lateralized differences in olfactory function. Neuroscience 237:51–55.  https://doi.org/10.1016/j.neuroscience.2013.01.044 CrossRefPubMedGoogle Scholar
  36. Hummel T et al (2013b) Olfactory bulb volume in patients with temporal lobe epilepsy. J Neurology 260:1004–1008.  https://doi.org/10.1007/s00415-012-6741-x CrossRefGoogle Scholar
  37. Jones-Gotman M, Zatorre RJ (1988) Olfactory identification deficits in patients with focal cerebral excision. Neuropsychologia 26:387–400CrossRefGoogle Scholar
  38. Kaneko N et al (2010) New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67:213–223.  https://doi.org/10.1016/j.neuron.2010.06.018 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A 98:4752–4757.  https://doi.org/10.1073/pnas.081074998 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kovacs T, Cairns NJ, Lantos PL (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer's disease. Neuropathol Appl Neurobiol 25:481–491CrossRefGoogle Scholar
  41. Lazarini F, Lledo PM (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34:20–30.  https://doi.org/10.1016/j.tins.2010.09.006 CrossRefPubMedGoogle Scholar
  42. Linster C, Cleland TA (2002) Cholinergic modulation of sensory representations in the olfactory bulb Neural networks : the official. J Int Neural Network Society 15:709–717CrossRefGoogle Scholar
  43. Lledo PM, Gheusi G (2003) Olfactory processing in a changing brain. Neuroreport 14:1655–1663.  https://doi.org/10.1097/01.wnr.0000092070.64779.76 CrossRefPubMedGoogle Scholar
  44. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981CrossRefGoogle Scholar
  45. Lotsch J et al (2013) Functional genomics suggest neurogenesis in the adult human olfactory bulb. Brain Struct Funct.  https://doi.org/10.1007/s00429-013-0618-3
  46. Maresh A, Rodriguez GD, Whitman MC, Greer, CA (2008) Principles of glomerular organization in the human olfactory bulb – implications for odor processing Plos One 9;3(7):e2640 doi: https://doi.org/10.1371/journal.pone.0002640
  47. McLean JH, Harley CW (2004) Olfactory learning in the rat pup: a model that may permit visualization of a mammalian memory trace. Neuroreport 15:1691–1697CrossRefGoogle Scholar
  48. Meisami E, Mikhail L, Baim D, Bhatnagar KP (1998) Human olfactory bulb: aging of glomeruli and mitral cells and a search for the accessory olfactory bulb. Ann N Y Acad Sci 855:708–715CrossRefGoogle Scholar
  49. Mineur YS, Belzung C, Crusio WE (2007) Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience 150:251–259.  https://doi.org/10.1016/j.neuroscience.2007.09.045 CrossRefPubMedGoogle Scholar
  50. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702.  https://doi.org/10.1016/j.neuron.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mizrahi A (2003) Dendritic stability in the adult olfactory bulb. Nat Neurosci 6(11):1201–1207CrossRefGoogle Scholar
  52. Mizrahi A (2007) Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nat Neurosci 10(4):444–452CrossRefGoogle Scholar
  53. Moberg PJ, Doty RL, Mahr RN, Mesholam RI, Arnold SE, Turetsky BI, Gur RE (1997) Olfactory identification in elderly schizophrenia and Alzheimer's disease. Neurobiol Aging 18:163–167CrossRefGoogle Scholar
  54. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686CrossRefGoogle Scholar
  55. Morizumi T, Tsukatani H, Miwa T (1994) Olfactory disturbance induced by deafferentation of serotoninergic fibers in the olfactory bulb. Neuroscience 61:733–738CrossRefGoogle Scholar
  56. Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, Hummel T (2005a) Olfactory bulb volumes in patients with idiopathic Parkinson's disease a pilot study. J Neural Transm (Vienna) 112:1363–1370.  https://doi.org/10.1007/s00702-005-0280-x CrossRefGoogle Scholar
  57. Mueller A, Rodewald A, Reden J, Gerber J, von Kummer R, Hummel T (2005b) Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport 16:475–478CrossRefGoogle Scholar
  58. Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Prevalence of olfactory impairment in older adults. JAMA 288:2307–2312CrossRefGoogle Scholar
  59. Naessen R (1971) An enquiry on the morphological characteristics and possible changes with age in the olfactory region of man. Acta Otolaryngol 71:49–62CrossRefGoogle Scholar
  60. Nagayama S, Homma R, Imamura F (2014) Neuronal organization of olfactory bulb circuits. Front Neural Circuits 3(8):98.  https://doi.org/10.3389/fncir.2014.00098 CrossRefGoogle Scholar
  61. Negoias S, Croy I, Gerber J, Puschmann S, Petrowski K, Joraschky P, Hummel T (2010) Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience 169:415–421.  https://doi.org/10.1016/j.neuroscience.2010.05.012 CrossRefPubMedGoogle Scholar
  62. Negoias S, Pietsch K, Hummel T (2017) Changes in olfactory bulb volume following lateralized olfactory training. Brain Imaging Behav 11:998–1005.  https://doi.org/10.1007/s11682-016-9567-9 CrossRefPubMedGoogle Scholar
  63. Nguyen AD, Pelavin PE, Shenton ME, Chilakamarri P, McCarley RW, Nestor PG, Levitt JJ (2011) Olfactory sulcal depth and olfactory bulb volume in patients with schizophrenia: an MRI study. Brain Imaging Behav 5:252–261.  https://doi.org/10.1007/s11682-011-9129-0 CrossRefPubMedGoogle Scholar
  64. Pagano SF et al (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18:295–300.  https://doi.org/10.1634/stemcells.18-4-295 CrossRefPubMedGoogle Scholar
  65. Paik SI, Lehman MN, Seiden AM, Duncan HJ, Smith DV (1992) Human olfactory biopsy. The influence of age and receptor distribution. Arc Otolaryngol Head Neck Surge 118:731–738CrossRefGoogle Scholar
  66. Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A (2016) Brain size and limits to adult neurogenesis. J Comp Neurol 524:646–664.  https://doi.org/10.1002/cne.23896 CrossRefPubMedGoogle Scholar
  67. Pozzati E, Martinoni M, Marucci G, Bacci A (2014) Olfactory neuroblastoma and olfactory ventricle. A case report. Neuroradiol J 27:452–455.  https://doi.org/10.15274/NRJ-2014-10060 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rawson NE (2006) Olfactory loss in aging. Sci Aging knowledge Environ 2006(pe6).  https://doi.org/10.1126/sageke.2006.5.pe6
  69. Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006a) Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116:436–439.  https://doi.org/10.1097/01.MLG.0000195291.36641.1E CrossRefPubMedGoogle Scholar
  70. Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006b) Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope 116:901–905.  https://doi.org/10.1097/01.mlg.0000217533.60311.e7 CrossRefPubMedGoogle Scholar
  71. Rombaux P, Potier H, Bertrand B, Duprez T, Hummel T (2008) Olfactory bulb volume in patients with sinonasal disease. Am J Rhinol 22:598–601.  https://doi.org/10.2500/ajr.2008.22.3237 CrossRefPubMedGoogle Scholar
  72. Rombaux P, Grandin C, Duprez T (2009) How to measure olfactory bulb volume and olfactory sulcus depth? B-Ent 5(Suppl 13):53–60PubMedGoogle Scholar
  73. Rombaux P, Huart C, De Volder AG, Cuevas I, Renier L, Duprez T, Grandin C (2010a) Increased olfactory bulb volume and olfactory function in early blind subjects. Neuroreport 21:1069–1073.  https://doi.org/10.1097/WNR.0b013e32833fcb8a CrossRefPubMedGoogle Scholar
  74. Rombaux P, Potier H, Markessis E, Duprez T, Hummel T (2010b) Olfactory bulb volume and depth of olfactory sulcus in patients with idiopathic olfactory loss. Eur Arch Otorhinolaryngol 267:1551–1556.  https://doi.org/10.1007/s00405-010-1230-2 CrossRefPubMedGoogle Scholar
  75. Rottstadt F et al (2018) Reduced olfactory bulb volume in depression-a structural moderator analysis. Hum Brain Mapp 39:2573–2582.  https://doi.org/10.1002/hbm.24024 CrossRefPubMedGoogle Scholar
  76. Samaulhaq MT, Lone KP (2008) Age and gender related differences in olfactory bulb glomeruli in human. Biomedica 24:12–17Google Scholar
  77. Sanai N et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744.  https://doi.org/10.1038/nature02301 CrossRefPubMedGoogle Scholar
  78. Sanai N et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386.  https://doi.org/10.1038/nature10487 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49CrossRefGoogle Scholar
  80. Shiga H et al (2013) Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers. PloS One 8:e57671.  https://doi.org/10.1371/journal.pone.0057671 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Smitka M et al (2009) Olfactory bulb ventricles as a frequent finding in magnetic resonance imaging studies of the olfactory system. Neuroscience 162:482–485.  https://doi.org/10.1016/j.neuroscience.2009.04.058 CrossRefPubMedGoogle Scholar
  82. Sorokowska A, Sorokowski P, Karwowski M, Larsson M, Hummel T (2018) Olfactory perception and blindness: a systematic review and meta-analysis. Psychol Res.  https://doi.org/10.1007/s00426-018-1035-2
  83. Tanik N, Serin HI, Celikbilek A, Inan LE, Gundogdu F (2015) Olfactory bulb and olfactory sulcus depths are associated with disease duration and attack frequency in multiple sclerosis patients. J Neuro Sci 358:304–307.  https://doi.org/10.1016/j.jns.2015.09.016 CrossRefGoogle Scholar
  84. Thomann PA, Dos Santos V, Toro P, Schonknecht P, Essig M, Schroder J (2009) Reduced olfactory bulb and tract volume in early Alzheimer's disease--a MRI study. Neurobiol Aging 30:838–841.  https://doi.org/10.1016/j.neurobiolaging.2007.08.001 CrossRefPubMedGoogle Scholar
  85. Turetsky BI, Moberg PJ, Yousem DM, Doty RL, Arnold SE, Gur RE (2000) Reduced olfactory bulb volume in patients with schizophrenia. Am J Psychiatry 157:828–830.  https://doi.org/10.1176/appi.ajp.157.5.828 CrossRefPubMedGoogle Scholar
  86. Veyseller B, Aksoy F, Yildirim YS, Bayraktar FG, Gurbuz D, Savas Y, Ozturan O (2011) Reduced olfactory bulb volume in total laryngectomy patients: a magnetic resonance imaging study. Rhinology 49:112–116.  https://doi.org/10.4193/Rhino10.001 CrossRefPubMedGoogle Scholar
  87. von Gudden B (1870) Experimentaluntersuchungen ueber das periphere und zentrale. Nervensystem Archiv f Psychiatrie u Nervenkrankheiten 2:693–723CrossRefGoogle Scholar
  88. Wang C et al (2011a) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550.  https://doi.org/10.1038/cr.2011.83 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J (2011b) Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am J Neuroradiol 32:677–681.  https://doi.org/10.3174/ajnr.A2350 CrossRefPubMedGoogle Scholar
  90. Wilson DA, Fletcher ML, Sullivan RM (2004) Acetylcholine and olfactory perceptual learning. Learn Mem 11:28–34CrossRefGoogle Scholar
  91. Yaldizli O et al (2016) The association between olfactory bulb volume, cognitive dysfunction, physical disability and depression in multiple sclerosis. Eur J Neurol 23:510–519.  https://doi.org/10.1111/ene.12891 CrossRefPubMedGoogle Scholar
  92. Yousem DM, Geckle RJ, Bilker WB, McKeown DA, Doty RL (1996) Posttraumatic olfactory dynfunction: MR and clinical evaluation. AJNR 17:1171–1179PubMedGoogle Scholar
  93. Yousem DM, Geckle RJ, Doty RL, Bulker WB (1997) Reproducibility and reliability of volumetric measurements of olfactory eloquent structures. Acad Radiol 4(4):264–269CrossRefGoogle Scholar
  94. Yousem DM, Geckle RJ, Bilker WB, Doty RL (1998) Olfactory bulb and tract and temporal lobe volumes. Normative data across decades. Ann N Y Acad Sci 855:546–555CrossRefGoogle Scholar
  95. Yousem DM, Geckle RJ, Bilker WB, Kroger H, Doty RL (1999) Posttraumatic smell loss: Relationship of psychophysical tests and volumes of the olfactory bulbs and tracts and the temporal lobes. Acad Radiol 6:264–272CrossRefGoogle Scholar
  96. Yuan Q, Harley CW, McLean JH (2003) Mitral cell a1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10:5–15CrossRefGoogle Scholar
  97. Zhang K, Yu C, Zhang Y, Wu X, Zhu C, Chan P, Li K (2011) Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease. Eur J Radiol 77:269–273.  https://doi.org/10.1016/j.ejrad.2009.07.032 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyCliniques universitaires Saint-LucBrusselsBelgium
  2. 2.Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
  3. 3.Smell and Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany

Personalised recommendations