Journal of Bioenergetics and Biomembranes

, Volume 50, Issue 4, pp 283–287 | Cite as

Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice

  • Valéria Sutti NunesEmail author
  • Patrícia Miralda Cazita
  • Sérgio Catanozi
  • Edna Regina Nakandakare
  • Eder Carlos Rocha Quintão


Apolipoprotein E knockout (apoE-KO) mice present synaptic loss, cognitive dysfunction, and high plasma lipid levels that may affect brain function simulating Alzheimer disease. Plasma and brain sterols were measured in apoE-KO and in wild type control mice on a cholesterol-free, phytosterol-containing diet by gas chromatography coupled to a mass spectrometer. Plasma cholesterol and phytosterols (campesterol and sitosterol) were higher in apoE-KO compared to control mice. Cholesterol precursors (desmosterol and lathosterol) were not detected in plasma of control mice but were present in apoE-KO mice. In the brain amounts of cholesterol, desmosterol, campesterol and 24-hydroxycholesterol were significantly lower in apoE-KO than in controls. There is a tendency in apoE-KO for lower values of 7α-hydroxycholesterol and 7β-hydroxycholesterol. Cholesterol content, synthesis rates (desmosterol) and export of 24-hydroxycholesterol are reduced in the brain of the severe hypercholesterolemic apoE-KO mice.


Apolipoprotein E knockout mice Sterols Phytosterols Oxysterols Brain 



The authors express their gratitude to Mr. Antônio dos Santos (Centro de Manutenção e Experimentação de Animais da Clínica Médica, Disciplina de Reumatologia FMUSP) for providing animal care, Monique de Fatima Mello Santana and Francisca Elda Batista (Laboratório de Lipides, LIM-10, HCFMUSP) for their technical support. This work was supported by the São Paulo Research Foundation (FAPESP), São Paulo, Brazil (grant number: 2015-17566-2).


  1. Bandaru VV, Troncoso J, Wheeler D, Pletnikova O, Wang J, Conant K, Haughey NJ (2009) ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain. Neurobiol Aging 30:591–599CrossRefPubMedPubMedCentralGoogle Scholar
  2. Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600PubMedPubMedCentralGoogle Scholar
  3. Björkhem I, Andersson U, Ellis E, Alvelius G, Ellegard L, Diczfalusy U, Sjovall J, Einarsson C (2001) From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J Biol Chem 276:37004–37010CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burns MP, Noble WJ, Olm V, Gaynor K, Casey E, LaFrancois J, Wang L, Duff K (2003) Co-localization of cholesterol, apolipoprotein E and fibrillar Abeta in amyloid plaques. Brain Res Mol Brain Res 110:119–125CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chobanian AV, Hollander W (1962) Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J Clin Invest 41:1732–1737CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dzeletovic S, Breuer O, Lund E, Diczfalusy U (1995) Determination of cholesterol oxidation products in human plasma by isotope dilution mass spectrometry. Anal Biochem 225:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ferreira GS, Pinto PR, Iborra RT, Del Bianco V, Santana MFM, Nakandakare ER et al (2017) Aerobic exercise training selectively changes oxysterol levels and metabolism reducing cholesterol accumulation in the aorta of Dyslipidemic mice. Front Physiol 8:644CrossRefPubMedPubMedCentralGoogle Scholar
  9. Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hossain MA, Tsujita M, Akita N, Kobayashi F, Yokoyama S (2009) Cholesterol homeostasis in ABCA1/LCAT double-deficient mouse. Biochim Biophys Acta 1791:1197–2059CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jenner AM, Lim WL, Ng MP, Wenk MR, Shui G, Sharman MJ et al (2010) The effect of APOE genotype on brain levels of oxysterols in young and old human APOE epsilon2, epsilon3 and epsilon4 knock-in mice. Neuroscience 169:109–115CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kivipelto M, Helkala EL, Hänninen T, Laakso MP, Hallikainen M, Alhainen K et al (2001) Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 56:1683–1689CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kruit JK, Groen AK, van Berkel TJ, Kuipers F (2006) Emerging roles of the intestine in control of cholesterol metabolism. World J Gastroenterol 12(40):6429–6439CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ledesma MD, Dotti CG (2006) Amyloid excess in Alzheimer's disease: what is cholesterol to be blamed for? FEBS Lett 580:5525–5532CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, Dingwall C, Dotti CG (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep 4:1190–1196CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee J, Choi J, Wong GW, Wolfgang MJ (2016) Neurometabolic roles of ApoE and Ldl-R in mouse brain. J Bioenerg Biomembr 48:13–21CrossRefPubMedPubMedCentralGoogle Scholar
  17. Leoni V, Solomon A, Kivipelto M (2010) Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment. Biochem Soc Trans 38(4):1021–1025CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lütjohann D, Breuer O, Ahlborg G, Nennesmo I, Sidén A, Diczfalusy U et al (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A 93:9799–9804CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lütjohann D, Harzer K, Gieselmann V, Eckhardt M (2006) Reduced brain cholesterol content in arylsulfatase A-deficient mice. Biochem Biophys Res Commun 344:647–650CrossRefPubMedPubMedCentralGoogle Scholar
  20. Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD (1995) Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol 136:107–122CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357CrossRefPubMedPubMedCentralGoogle Scholar
  22. Meljon A, Wang Y, Griffiths WJ (2014) Oxysterols in the brain of the cholesterol 24-hydroxylase knockout mouse. Biochem Biophys Res Commun 446:768–774CrossRefPubMedPubMedCentralGoogle Scholar
  23. Michikawa M, Fan QW, Isobe I, Yanagisawa K (2000) Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J Neurochem 74:1008–1106CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nunes VS, Leança CC, Panzoldo NB, Parra E, Cazita PM, Nakandakare ER, de Faria EC, Quintão ECR (2011) HDL-C concentration is related to markers of absorption and of cholesterol synthesis: study in subjects with low vs. high HDL-C. Clin Chim Acta 412:176–180CrossRefPubMedPubMedCentralGoogle Scholar
  25. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353CrossRefPubMedPubMedCentralGoogle Scholar
  26. Quan G, Xie C, Dietschy JM, Turley SD (2003) Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res 146:87–98CrossRefPubMedPubMedCentralGoogle Scholar
  27. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127:838S–841SCrossRefPubMedPubMedCentralGoogle Scholar
  28. Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T (2009) Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 78:1017–1040CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR (1994) Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94CrossRefPubMedPubMedCentralGoogle Scholar
  30. Thelen KM, Falkai P, Bayer TA, Lütjohann D (2006) Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 403:15–19CrossRefPubMedPubMedCentralGoogle Scholar
  31. Valenza M, Leoni V, Tarditi A, Mariotti C, Björkhem I, Di Donato S, Cattaneo E (2007) Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 28:133–142CrossRefPubMedPubMedCentralGoogle Scholar
  32. Walker LC, Parker CA, Lipinski WJ, Callahan MJ, Carroll RT, Gandy SE, Smith JD, Jucker M, Bisgaier CL (1997) Cerebral lipid deposition in aged apolipoprotein-E-deficient mice. Am J Pathol 151:1371–1377PubMedPubMedCentralGoogle Scholar
  33. Zatta P, Zambenedetti P, Stella MP, Licastro F (2002) Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits. J Alzheimers Dis 4:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Valéria Sutti Nunes
    • 1
    Email author
  • Patrícia Miralda Cazita
    • 1
  • Sérgio Catanozi
    • 1
  • Edna Regina Nakandakare
    • 1
  • Eder Carlos Rocha Quintão
    • 1
  1. 1.Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil

Personalised recommendations