Journal of Bioenergetics and Biomembranes

, Volume 49, Issue 3, pp 253–264 | Cite as

Glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria

  • Vera V. Teplova
  • Alexey G. KruglovEmail author
  • Leonid I. Kovalyov
  • Anna B. Nikiforova
  • Nadezhda I. Fedotcheva
  • John J. Lemasters


Chronic alcohol intoxication is associated with increased oxidative stress. However, the mechanisms by which ethanol triggers an increase in the production of reactive oxygen species (ROS) and the role of mitochondria in the development of oxidative stress has been insufficiently studied. The biochemical and proteomic data obtained in the present work suggest that one of the main causes of an increase in ROS generation is enhanced oxidation of glutamate in response to long-term alcohol exposure. In the course of glutamate oxidation, liver mitochondria from alcoholic rats generated more superoxide anion and H2O2 than in the presence of other substrates and more than control organelles. In mitochondria from alcoholic rats, rates of H2O2 production and NAD reduction in the presence of glutamate were almost twice higher than in the control. The proteomic study revealed a higher content of glutamate dehydrogenase in liver mitochondria of rats subjected to chronic alcohol exposure. Simultaneously, the content of mitochondrial catalase decreased compared to control. Each of these factors stimulates the production of ROS in addition to ROS generated by the respiratory chain complex I. The results are consistent with the conclusion that glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria.


Chronic alcohol intoxication Oxidative stress Liver mitochondria Reactive oxygen species Glutamate dehydrogenase 



This work was supported by grant from the Ministry of Education and Science of the Russian Federation, Agreement № 14.Z50.31.0028 and grant from the Russian Foundation for Basic Research (project № 14-04-01664a).


  1. Auger C, Alhasawi A, Contavadoo M, Appanna VD (2015) Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 3:40. doi: 10.3389/fcell.2015.00040 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bailey SM, Cunningham CC (1998) Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Hepatology 28:1318–1326CrossRefGoogle Scholar
  3. Bailey SM, Pietsch EC, Cunningham CC (1999) Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Radic Biol Med 27:891–900CrossRefGoogle Scholar
  4. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31CrossRefGoogle Scholar
  5. Cahill A, Cunningham CC, Adachi M, Ishil H, Bailey SM, Fromently B, Davies A (2002) Effect of alcohol and oxidative stress in liver pathology: the role of mitochondrion. Alcohol Clin Exper Res 26:907–915CrossRefGoogle Scholar
  6. Cascales C, Cascales M, Santos-Ruiz A (1985) Effect of chronic ethanol or acetaldehyde on hepatic alcohol and aldehyde dehydrogenases, aminotransferases and glutamate dehydrogenase. Rev Esp Fysiol 41:19–27Google Scholar
  7. Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548CrossRefGoogle Scholar
  8. Coleman WB, Cunningham CC (1990) Effects of chronic ethanol consumption on the synthesis of polypeptides encoded by the hepatic mitochondrial genome. Biochim Biophys Acta 1019:142–150CrossRefGoogle Scholar
  9. Coleman WB, Cunningham CC (1991) Effect of chronic ethanol consumption on hepatic mitochondrial transcription and translation. Biochim Biophys Acta 1058:178–186CrossRefGoogle Scholar
  10. Criddle DN, Gillies S, Baumgartner-Wilson HK, Jaffar M, Chinje EC, Passmore S, Chvanov M, Barrow S, Gerasimenko OV, Tepikin AV, Sutton R, Petersen OH (2006) Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281:40485–40492CrossRefGoogle Scholar
  11. Cunningham CC, Bailey SM (2001) Ethanol consumption and liver mitochondria function. Biol Signals Recept 10:271–282CrossRefGoogle Scholar
  12. Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81:177–187CrossRefGoogle Scholar
  13. Dedukhova VI, Kirillova GP, Mokhova EN, Rozovskaia IA, Skulachev VP (1986) Effect of menadione and vicasol on mitochondrial energy during inhibition of initiation sites of the respiration chain. Biochem Mosc 51:567–573Google Scholar
  14. Dedukhova VI, Mokhova EN (1987) Therapeutic doses of menadione reduce the rotenone-induced inhibition of respiration and membrane potential generation in mitochondria. Biochem Mosc 52:1324–1334Google Scholar
  15. Eytan GD, Carlenor E, Rydström J (1990) Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles. J Biol Chem 265:12949–12954PubMedGoogle Scholar
  16. Fedotcheva NI, Teplova VV, Beloborodova NV (2010) The participation of phenolic acids of microbial origin in the dysfunction of mitochondria in sepsis. Biochemistry (Moscow) Suppl. Series A: Membrane and Cell Biology, 4: 50–55CrossRefGoogle Scholar
  17. Garcı’a-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2013) Role of mitochondria in alcoholic liver disease. Curr Pathobiol Rep 1:159–168CrossRefGoogle Scholar
  18. Gavrikova EV, Vinogradov AD (1999) Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling. FEBS Lett 455(1–2):36–40CrossRefGoogle Scholar
  19. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638. doi: 10.1016/j.cell.2013.11.037 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Govorun VM, Moshkovskii SA, Tikhonova OV, Goufman EI, Serebryakova MV, Momynaliev KT, Lokhov PG, Khryapova EV, Kudryavtseva LV, Smirnova OV, Toropygin IY, Maksimov BI, Archakov AI (2003) Comparative analysis of proteome maps of helicobacter pylori clinical isolates. Biochemistry (Mosc) 68:52–60CrossRefGoogle Scholar
  21. Gores GJ, Flarsheim CE, Dawson TL, Nieminen A-L, Herman B, Lemasters JJ (1989) Swelling, reductive stress and cell death during chemical hypoxia in hepatocytes. Am J Phys 257:C347–C354CrossRefGoogle Scholar
  22. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766PubMedPubMedCentralGoogle Scholar
  23. Gostimskaya IS, Cecchini G, Vinogradov AD (2006) Topography and chemical reactivity of the active-inactive transition-sensitive SH-group in the mitochondrial NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1757(9–10):1155–1161CrossRefGoogle Scholar
  24. Grattagliano I, Russmann S, Diogo C, Bonfrate L, Oliveira PJ, Wang DQ, Portincasa P (2011) Mitochondria in chronic liver disease. Curr. Drug targets 12: 879–893CrossRefGoogle Scholar
  25. Grivennikova VG, Cecchini G, Vinogradov AD (2008) Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Lett 582:2719–2724CrossRefGoogle Scholar
  26. Han D, Johnson HS, Rao MP, Martin G, Sancheti H, Silkwood KH, Decker CW, Nguyen KT, Casian JG, Cadenas E, Kaplowitz N (2017) Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic Biol Med 102:100–110. doi: 10.1016/j.freeradbiomed.2016.11.020 CrossRefPubMedGoogle Scholar
  27. He Q, Wang M, Petucci C, Gardell SJ, Han X (2013) Rotenone induces reductive stress and triacylglycerol deposition in C2C12 cells. Int J Biochem Cell Biol 45:2749–2755. doi: 10.1016/j.biocel.2013.09.011 CrossRefPubMedGoogle Scholar
  28. Hoek JB, Cahill A, Pastorino JG (2002) Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 122:2049–2063CrossRefGoogle Scholar
  29. Holmuhamedov EL, Czerny C, Beeson CC, Lemasters JJ (2012) Ethanol suppresses ureagenesis in rat hepatocytes: role of acetaldehyde. J. Biol. Chem. 287: 7692–7670. PMCID: PMC3293599CrossRefGoogle Scholar
  30. Kambayashi Y, Ogino K (2003) Reestimation of cypridina luciferin analogs (MCLA) as a chemiluminescence probe to detect active oxygen species – cautionary note for use of MCLA. J Toxicol Sci 28:139–148CrossRefGoogle Scholar
  31. Kravos M, Malesic I (2010) Changes in leukocyte glutamate dehydrogenase activity in alcoholics upon break in alcohol consumption. Clin Biochem 43:272–277CrossRefGoogle Scholar
  32. Kukielka E, Dicker E, Cederbaum AI (1994) Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch Biochem Biophys 309:377–386CrossRefGoogle Scholar
  33. Kumar P, Bhandari U (2013) Protective effect of Trigonella foenum-graecum Linn. On monosodium glutamate-induced dyslipidemia and oxidative stress in rats. Indian J Pharmacol 45:136–140CrossRefGoogle Scholar
  34. Kovalyov LI, Shishkin SS, Efimochkin AS, Kovalyova MA, Ershova ES, Egorov TA, Musalyamov AK (1995) The major protein expression profile and two-dimensional protein database of human heart. Electrophoresis 16:1160–1169CrossRefGoogle Scholar
  35. Kovalev LI, Kovaleva AA, Kovalev PL, Serebryakova MV, Moshkovskii SA, Shishkin SS (2006) Polymorphism of delta 3,5-delta 2,4-dienoyl-coenzyme a isomerase (the ECH1 gene product protein) in human striated muscle tissue. Biochemistry (Mosc) 71:554–560Google Scholar
  36. Kovalyova MA, Kovalyov LI, Toropygin IY, Shigeev SV, Ivanov AV, Shishkin SS (2009) Proteomic analysis of human skeletal muscle (m. Vastus lateralis) proteins: identification of 89 gene expression products. Biochem Mosc 74:1239–1252. doi: 10.1134/S0006297909110108 CrossRefGoogle Scholar
  37. Lang CH, Frost RA, Svanberg E, Vary TC (2004) IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability, and myostatin in alcohol-fed rats. Am J Physiol Endocrinol Metab 286:E916–E926CrossRefGoogle Scholar
  38. Larosche I, Choumar A, Fromenty B, Lettéron P, Abbey-Toby A, Van Remmen H, Epstein CJ, Richardson A, Feldmann G, Pessayre D, Mansouri A (2009) Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates. Toxicol Appl Pharmacol 234(3):326–338. doi: 10.1016/j.taap.2008.11.004 CrossRefPubMedGoogle Scholar
  39. Leung TM, Nieto N (2013) CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J Hepatol 58:395–398. doi: 10.1016/j.jhep.2012.08.018 CrossRefPubMedGoogle Scholar
  40. Louvet A, Mathurin P (2015) Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12:231–242CrossRefGoogle Scholar
  41. Mandrekar P, Ambade A (2012) Cellular signaling pathways in alcoholic liver disease. In: Shimizu I (ed) Trends in alcoholic liver disease research - Clinical and scientific aspects. InTech 91–112. doi: 10.5772/27412. Available from: Google Scholar
  42. Mantena KS, King AL, Andringa KK, Eccleston HB, Bailey SM (2008) Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol and obesity induced fatty liver diseases. Free Radic Biol Med 44:1259–1272CrossRefGoogle Scholar
  43. Manzo-Avalos S, Saavedra-Molina A (2010) Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 7:4281–4304CrossRefGoogle Scholar
  44. Marcinkeviciute A, Mildaziene V, Crumm S, Demin O, Hoek JB, Kholodenko B (2000) Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. Biochem J 349:519–526CrossRefGoogle Scholar
  45. Moore GA, O'Brien PJ, Orrenius S (1986) Menadione (2-methyl-1,4-naphthoquinone)-induced Ca2+ release from rat-liver mitochondria is caused by NAD(P)H oxidation. Xenobiotica 16:873–882CrossRefGoogle Scholar
  46. Nassir F, Ibdah JA (2014) Role of mitochondria in alcoholic liver disease. World J Gastroenterol 20:2136–2142CrossRefGoogle Scholar
  47. Nikiforova AB, Saris NE, Kruglov AG (2014) External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3? Free Radic. Biol Med 74:74–84Google Scholar
  48. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  49. Sasaki Y, Shimada T, Iizuka S, Suzuki W, Makihara H, Teraoka R, Tsuneyama K, Hokao R, Aburada M (2011) Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome. Eur J Pharmacol 662:1–8CrossRefGoogle Scholar
  50. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205CrossRefGoogle Scholar
  51. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  52. Shubina VS, Shatalin YuV, Teplova VV (2013) Oxidative stress in the pathogenesis of alcoholic encephalopathy. Proceedings’ book. International conference “receptors and signaling” (27-30 may Pushchino) 2: 626–630Google Scholar
  53. Sid B, Verrax J, Calderon PB (2013a) Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res 47:894–904CrossRefGoogle Scholar
  54. Sid B, Verrax J, Calderon PB (2013b) Role of AMPK activation in oxidative cell damage: implications for alcohol-induced liver disease. Biochem Pharmacol 86(2):200–209CrossRefGoogle Scholar
  55. Song B-J, Abdelmegeed MA, Henderson LE, Yoo S-H, Wan J, Purohit V, Hardwick JP, Moon K-H (2013) Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease Oxidative Medicine and Cellular Longevity Article ID 781050, doi: 10.1155/2013/781050 CrossRefGoogle Scholar
  56. Starkov AA (2010) Measurement of mitochondrial ROS production. Methods Mol Biol 648:245–255CrossRefGoogle Scholar
  57. Sun Q, Zhong W, Zhang W, Zhou Z (2016) Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency. Am J Physiol Gastrointest Liver Physiol 310:G205–C214CrossRefGoogle Scholar
  58. Tang Y, Gao C, Xing M, Li Y, Zhu L, Wang D, Yang X, Liu L, Yao P (2012) Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 50(5):1194–1200. doi: 10.1016/j.fct.2012.02.008 CrossRefPubMedGoogle Scholar
  59. Teplova VV, Mikkola R, Tonshin AA, Saris NE, Salkinoja-Salonen MS (2006) The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol Appl Pharmacol 210:39–46CrossRefGoogle Scholar
  60. Teplova VV, Belosludtsev KN, Belosludtseva NV, Holmuhamedov EL (2010) Role of mitochondria in hepatotoxicity of ethanol. Biophysics (Russia) 55:1038–1047CrossRefGoogle Scholar
  61. Tominaga T, Suzuki H, Mizuno H, Kouno M, Suzuki M, Kato Y, Sato A, Okabe K, Miyashita M (1993) Clinical significance of measuring plasma concentrations of glutamine and glutamate in alcoholic liver diseases. Alcohol Alcohol Suppl 1A:103–109CrossRefGoogle Scholar
  62. Uto H, Kanumra S, Takami Y, Tsubouchi H (2010) Clinical proteomics for liver disease: a promising approach for discovery of novel biomarkers. Proteome Sci 8:70 CrossRefGoogle Scholar
  63. Venkatraman A, Landar A, Davis AJ, Chamlee L, Sanderson T, Kim H, Page G, Pompilius M, Ballinger S, Darley-Usmar V, Bailey SM (2004) Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatotoxicity. J Biol Chem 279:22092–22101CrossRefGoogle Scholar
  64. Vidyashankar S, Nandakumar KS, Patki PS (2012) Alcohol depletes coenzyme-Q(10) associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells. Toxicology 302(1):34–39. doi: 10.1016/j.tox.2012.07.009 CrossRefPubMedGoogle Scholar
  65. Walter H, Ramskogler-Skala K, Dvorak A, Gutierrez-Lobos K, Hartl D, Hertling I, Munda P, Thau K, Lesch OM, De Witte P (2006) Glutamic acid in withdrawal and weaning in patients classified according to Cloninger's and Lesch's typologies. Alcohol Alcohol 41:505–511CrossRefGoogle Scholar
  66. Wu D, Cederbaum AI (2009) Oxidative stress and alcoholic liver disease. Semin Liver Dis 29:141–154. doi: 10.1055/s-0029-1214370 CrossRefPubMedGoogle Scholar
  67. Yamashina S, Sato N, Kon K, Ikejima K, Watanabe S (2010) Role of mitochondria in liver pathophysiology, www.Drugdiscoverytoday.Com Elsevier ltd. doi: 10.1016/j.ddmec.2010.05.00
  68. Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res Article ID 137919, 11 pages. doi: 10.1155/2014/13791
  69. Zhang P, Qiang X, Zhang M, Ma D, Zhao Z, Zhou C, Liu X, Li R, Chen H, Zhang Y (2015) Demethyleneberberine, a natural mitochondria-targeted antioxidant, inhibits mitochondrial dysfunction, oxidative stress, and steatosis in alcoholic liver disease mouse model. J Pharmacol Exp Ther 352(1):139–147. doi: 10.1124/jpet.114.219832 CrossRefPubMedGoogle Scholar
  70. Zelickson BR, Benavides GA, Johnson MS, Chacko BK, Venkatraman A, Landar A, Betancourt AM, Bailey SM, Darley-Usmar VM (2011) Nitric oxide and hypoxia exacerbate alcohol-induced mitochondrial dysfunction in hepatocytes. Biochim Biophys Acta 1807:1573–1582CrossRefGoogle Scholar
  71. Zeng T, Zhang CL, Zhu ZP, Yu LH, Zhao XL, Xie KQ (2008) Diallyl trisulfide (DATS) effectively attenuated oxidative stress-mediated liver injury and hepatic mitochondrial dysfunction in acute ethanol-exposed mice. Toxicology 252(1–3):86–91. doi: 10.1016/j.tox.2008.07.062 CrossRefPubMedGoogle Scholar
  72. Zhong Z, Ramshesh VK, Rehman H, Liu Q, Theruvath TP, Krishnasamy Y, Lemasters JJ (2014) Acute ethanol causes hepatic mitochondrial depolarization in mice: role of ethanol metabolism. PLoS One 9, e91308. doi: 10.1371/journal.pone.0091308. eCollection 2014CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  3. 3.Center for Cell Death, Injury & Regeneration, Department of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular BiologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations