Journal of Bioenergetics and Biomembranes

, Volume 49, Issue 2, pp 149–158 | Cite as

Energetic, oxidative and ionic exchange in rat brain and liver mitochondria at experimental audiogenic epilepsy (Krushinsky–Molodkina model)

  • Natalya I. VenediktovaEmail author
  • Olga S. Gorbacheva
  • Natalia V. Belosludtseva
  • Irina B. Fedotova
  • Natalia M. Surina
  • Inga I. Poletaeva
  • Oleg V. Kolomytkin
  • Galina D. Mironova


The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.


Audiogenic epilepsy mitoKATP Respiration Ions transport H2O2 production 



We are sincerely grateful to Dr. M.E. Astashev for providing the Filter software package for the curve smoothing. This work was supported by Russian Science foundation (RSF) (grant № 16-15-00157) (http://xn--m1afn.xn--p1ai/) (Mironova G.D., Belosludtseva N.V., Gorbacheva O.S.); the work with experimental animals, procedure of their sonication and the work of technicians were supported by Russian Foundation for Basic Research (RFBR) (grants № 04-15-01732a and 16-04-00692a).


  1. Acharya MM, Katyare SS (2005) Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain. Exp Neurol 192(1):79–88CrossRefGoogle Scholar
  2. Anderson CM, Parkinson FE (1997) Potential signaling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. TiPS 18:387–397Google Scholar
  3. Baranova OV, Skarga YY, Negoda AE, Mironova GD (2000) Inhibition of 2,4-dinitrophenol-induced potassium efflux by adenine nucleotides in mitochondria. Biochemistry (Mosc) 65(2):218–222Google Scholar
  4. Candelario-Jalil E, Al-Dalain SM, Castillo R, Martínez G, Fernández OS (2001) Selective vulnerability to kainate-induced oxidative damage in different rat brain regions. J Appl Toxicol 21(5):403–407CrossRefGoogle Scholar
  5. Dal-Pizzol F, Klamt F, Vianna MM, Schröder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291(3):179–182CrossRefGoogle Scholar
  6. de Vries MC, Rodenburg RJ, Morava E, van Kaauwen EP, ter Laak H, Mullaart RA, Snoeck IN, van Hasselt PM, Harding P, van den Heuvel LP, Smeitink JA (2007) Multiple oxidative phosphorylation deficiencies in severe childhood multi-system disorders due to polymerase gamma (POLG1) mutations. Eur J Pediatr 166(3):229–234CrossRefGoogle Scholar
  7. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52(2):381–389CrossRefGoogle Scholar
  8. Doretto MC, Fonseca CG, Lobo RB, Terra VC, Oliveira JA, Garcia-Cairasco N (2003) Quantitative study of the response to genetic selection of the Wistar audiogenic rat strain (WAR). Behav Genet 33:33–42CrossRefGoogle Scholar
  9. dos Santos PS, Costa JP, Tomé Ada R, Saldanha GB, de Souza GF, Feng D, de Freitas RM (2011) Oxidative stress in rat striatum after pilocarpine-induced seizures is diminished by alpha-tocopherol. Eur J Pharmacol 668(1–2):65–71CrossRefGoogle Scholar
  10. Fato R, Bergamini C, Leoni S, Strocchi P, Lenaz G (2008) Generation of reactive oxygen species by mitochondrial complex I: implications in neurodegeneration. Neurochem Res 33:2487–2501CrossRefGoogle Scholar
  11. Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536(1–3):51–55CrossRefGoogle Scholar
  12. Folbergrová J, Jesina P, Haugvicová R, Lisý V, Houstek J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. J Neurochem Int 56(3):394–403CrossRefGoogle Scholar
  13. Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97(3):431–435CrossRefGoogle Scholar
  14. Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272(6):1307–1312CrossRefGoogle Scholar
  15. Gauthier-Villars M, Landrieu P, Cormier-Daire V, Jacquemin E, Chrétien D, Rötig A, Rustin P, Munnich A, de Lonlay P (2001) Respiratory chain deficiency in Alpers syndrome. Neuropediatrics 32(3):150–152CrossRefGoogle Scholar
  16. Gluck MR, Jayatilleke E, Shaw S, Rowan AJ, Haroutunian V (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39(1):63–71CrossRefGoogle Scholar
  17. Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 5(2):113–119CrossRefGoogle Scholar
  18. Huang CW, Wu SN, Cheng JT, Tsai JJ, Huang CC (2010) Diazoxide reduces status epilepticus neuron damage in diabetes. Neurotox Res 17:305–316CrossRefGoogle Scholar
  19. Kovac S, Domijan AM, Walker MC, Abramov AY (2012) Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J Cell Sci 125(Pt 7):1796–1806CrossRefGoogle Scholar
  20. Krylova IB, Kachaeva EV, Rodionova OM, Negoda AE, Evdokimova NR, Balina MI, Sapronov NS, Mironova GD (2006) The cardioprotective effect of uridine and uridine-5'-monophosphate: the role of the mitochondrial ATP-dependent potassium channel. Exp Gerontol 41(7):697–703CrossRefGoogle Scholar
  21. Krylova IB, Bulion VV, Selina EN, Mironova GD, Sapronov NS (2012) Effect of uridine on energy metabolism, LPO, and antioxidant system in the myocardium under conditions of acute coronary insufficiency. Bull Exp Biol Med 153(5):644–646CrossRefGoogle Scholar
  22. Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15(7):1105–1114CrossRefGoogle Scholar
  23. Kulagina TP, Aripovsky AV, Savina TA, Shchipakina TG, Godukhin OV (2015) The changes in fatty acids composition in the auditory cortex of rats after a single audiogenic seizure. Ross Fiziol Zh im I M Sechenova 101(9):999–1006Google Scholar
  24. Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48(5):766–773CrossRefGoogle Scholar
  25. Kurtz BS, Lehman J, Garlick P, Amberg J, Mishra PK, Dailey JW (2001) Penetrance and expressivity of genes involved in the development of epilepsy in the genetically epilepsy-prone rat (GEPR). J Neurogenet 15:233–244CrossRefGoogle Scholar
  26. Lee YM, Kang HC, Lee JS, Kim SH, Kim EY, Lee SK, Slama A, Kim HD (2008) Mitochondrial respiratory chain defects: underlying etiology in various epileptic conditions. Epilepsia 49(4):685–690CrossRefGoogle Scholar
  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  28. Mankovskaya IN, Nosar VI, Gorbacheva OS, Gonchar OA, Bratus LV, Mironova GD (2014) The effect of uridine on the endurance of animals with different resistance to physical stress: the role of mitochondrial ATP-dependent potassium channel. Biophysics 59(5):764–767CrossRefGoogle Scholar
  29. Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepchenko B, Loew LM, Hsieh CE, Buttle K, Marko M (2001) Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52(3–5):93–100CrossRefGoogle Scholar
  30. Martinc B, Grabnar I, Vovk T (2012) The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol 10:328–343CrossRefGoogle Scholar
  31. Montoya-Pérez R, Saavedra-Molina A, Trujillo X, Huerta M, Andrade F, Sánchez-Pastor E, Ortiz M (2010) Inhibition of oxygen consumption in skeletal muscle-derived mitochondria by pinacidil, diazoxide, and glibenclamide, but not by 5-hydroxydecanoate. J Bioenerg Biomembr 42(1):21–27CrossRefGoogle Scholar
  32. Müller M, Somjen GG (2000) Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83(2):735–745Google Scholar
  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  34. Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N (2014) Epileptic focus and alteration of metabolism. Int Rev Neurobiol 114:209–243. doi: 10.1016/b978-0-12-418693-4.00009-1 CrossRefGoogle Scholar
  35. Poletaeva II, Surina NM, Kostina ZA, Perepelkina OV, Fedotova IB (2015) Epilepsy Behav YEBEH-04369Google Scholar
  36. Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. doi: 10.1155/2015/745613 Google Scholar
  37. Raĭgorodskaia DI, Medvedev GVZ, Fedotova IB, Semiokhina AF (1991) Change in the catalytic properties of mitochondrial monoamine oxidase in experimental audiogenic epilepsy. Vopr Med Khim 37(2):46–48Google Scholar
  38. Rao VK, Carlson EA, Yan SS (2014) Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 1842(8):1267–1272. doi: 10.1016/j.bbadis CrossRefGoogle Scholar
  39. Richter C (1984) Hydroperoxide effects on redox state of pyridine nucleotides and Ca2+ retention by mitochondria. Methods Enzymol 105:435–441CrossRefGoogle Scholar
  40. Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M (2015) Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 75:151–158CrossRefGoogle Scholar
  41. Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E (2015) CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet 96(2):258–265CrossRefGoogle Scholar
  42. Shafaroodi H, Barati S, Ghasemi M, Almasirad A, Moezi L (2016) A role for ATP-sensitive potassium channels in the anticonvulsant effects of triamterene in mice. Epilepsy Res 121:8–13CrossRefGoogle Scholar
  43. Sleven H, Gibbs JE, Heales S, Thom M, Cock HR (2006) Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus. Neurochem Int 48(2):75–82CrossRefGoogle Scholar
  44. Sparks DL, Buckholtz NS (1985) Combined inhibition of serotonin uptake and oxidative deamination attenuates audiogenic seizures in DBA/2 J mice. Pharmacol Biochem Behav 23:753–757CrossRefGoogle Scholar
  45. Testai L, Rapposelli S, Martelli A, Breschi MC, Calderone V (2015) Mitochondrial potassium channels as pharmacological target for cardioprotective drugs. Med Res Rev 35(3):520–553CrossRefGoogle Scholar
  46. Waldbaum S, Patel M (2010a) Mitochondrial oxidative stress in temporal lobe epilepsy. Epilepsy Res 88(1):23–45CrossRefGoogle Scholar
  47. Waldbaum S, Patel M (2010b) Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr 42(6):449–455CrossRefGoogle Scholar
  48. Zhao Q, Marolewski A, Rusche JR, Holmes GL (2006) Effects of uridine in models of epileptogenesis and seizures. Epilepsy Res 70:73–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Natalya I. Venediktova
    • 1
    Email author
  • Olga S. Gorbacheva
    • 1
  • Natalia V. Belosludtseva
    • 1
  • Irina B. Fedotova
    • 2
  • Natalia M. Surina
    • 2
  • Inga I. Poletaeva
    • 2
  • Oleg V. Kolomytkin
    • 1
  • Galina D. Mironova
    • 1
  1. 1.Institute of Theoretical and Experimental Biophysics RASMoscow RegionRussia
  2. 2.Biology Department, Laboratory for Physiology and Genetics of BehaviorLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations