Journal of Bioenergetics and Biomembranes

, Volume 49, Issue 1, pp 75–99 | Cite as

Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids

  • María Luisa Campo
  • Pablo M. Peixoto
  • Sonia Martínez-Caballero
Article

Abstract

The discovery of very large channels in the two membranes of mitochondria represented an astonishing finding and a turning point in the awareness of these conspicuous energy-generating organelles. Sizable channels are at the crossroads of important cellular pathways and mitochondrial functions like biogenesis, signaling, secretion, compartmentalization or apoptosis. The integrative approach that combines electrophysiological methods with biochemical and genetic alterations has been decisive to tackle the structure-function relationship of mitochondrial mega-channels. In this review we will give a short account of our joint effort to correlate the existence of large conductance channels in the two membranes of mitochondria with a precise function. In particular, we will focus on the import of proteins and nucleic acids. An analysis of the character of the aqueous pores through which these two types of macromolecules enter mitochondria has been attained, and an up-to date survey of the developments reached in these investigations will be presented. An overlook of the import pathways for proteins and nucleic acids into mitochondria will be outlined. Although this research area is rapidly developing, many issues remain shrouded in uncertainties. A special emphasis will be prone to the not yet entirely settled synergies between different protein translocases.

Keywords

Mitochondrial channels Protein import Nucleic acid import Patch-clamp 

References

  1. Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T, Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–560. doi:10.1016/s0092-8674(00)80691-1 CrossRefGoogle Scholar
  2. Abu-Hamad S, Sivan S, Shoshan-Barmatz V (2006) Correction for Abu-Hamad et al., the expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci 103:13896–13896. doi:10.1073/pnas.0606082103 CrossRefGoogle Scholar
  3. Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122:1906–1916. doi:10.1242/jcs.040188 CrossRefGoogle Scholar
  4. Ahting U, Thun C, Hegerl R, Typke D, Nargang FE, Neupert W, Nussberger S (1999) The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J Cell Biol 147:959–968. doi:10.1083/jcb.147.5.959 CrossRefGoogle Scholar
  5. Alder NN, Sutherland J, Buhring AI, Jensen RE, Johnson AE (2008) Quaternary structure of the mitochondrial TIM23 complex reveals dynamic association between Tim23p and other subunits. Mol Biol Cell 19:159–170. doi:10.1091/mbc.E07-07-0669 CrossRefGoogle Scholar
  6. Amaral A, Lourenco B, Marques M, Ramalho-Santos J (2013) Mitochondria functionality and sperm quality. Reproduction 146:R163–R174. doi:10.1530/rep-13-0178 CrossRefGoogle Scholar
  7. Antonenko YN, Kinnally KW, Perini S, Tedeschi H (1991) Selective effect of inhibitors on inner mitochondrial-membrane channels. Febs Lett 285:89–93. doi:10.1016/0014-5793(91)80731-h CrossRefGoogle Scholar
  8. Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defence: Hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377:347–355. doi:10.1042/Bj20031465 CrossRefGoogle Scholar
  9. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555. doi:10.1038/ncb1575 CrossRefGoogle Scholar
  10. Bajaj R, Munari F, Becker S, Zweckstetter M (2014) Interaction of the intermembrane space domain of Tim23 protein with mitochondrial membranes. J Biol Chem 289:34620–34626. doi:10.1074/jbc.M114.595702 CrossRefGoogle Scholar
  11. Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B (2015) A moonlighting human protein is involved in mitochondrial import of tRNA. Int J Mol Sci 16:9354–9367. doi:10.3390/ijms16059354 CrossRefGoogle Scholar
  12. Bandiera S, Ruberg S, Girard M, Cagnard N, Hanein S, Chretien D, Munnich A, Lyonnet S, Henrion-Caude A (2011) Nuclear outsourcing of RNA interference components to human mitochondria. Plos One 6. doi: 10.1371/journal.pone.0020746
  13. Banerjee J, Ghosh S (2004) Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem Bioph Res Co 323:310–314. doi:10.1016/j.bbrc.2004.08.094 CrossRefGoogle Scholar
  14. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) Pre-microRNA and mature microRNA in human mitochondria. Plos One 6. doi: 10.1371/journal.pone.0020220
  15. Bauer MF, Sirrenberg C, Neupert W, Brunner M (1996) Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87:33–41. doi:10.1016/s0092-8674(00)81320-3 CrossRefGoogle Scholar
  16. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105:15370–15375. doi:10.1073/pnas.0808115105 CrossRefGoogle Scholar
  17. Beasley EM, Muller S, Schatz G (1993) The signal that sorts yeast cytochrome b2 to the mitochondrial intermembrane space contains three distinct functional regions. Embo J 12:2303–2311Google Scholar
  18. Becker L, Bannwarth M, Meisinger C, Hill K, Model K, Krimmer T, Casadio R, Truscott KN, Schulz GE, Pfanner N, Wagner R (2005) Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J Mol Biol 353:1011–1020. doi:10.1016/j.jmb.2005.09.019 CrossRefGoogle Scholar
  19. Becker T, Pfannschmidt S, Guiard B, Stojanovski D, Milenkovic D, Kutik S, Pfanner N, Meisinger C, Wiedemann N (2008) Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J Biol Chem 283:120–127. doi:10.1074/jbc.M706997200 CrossRefGoogle Scholar
  20. Becker T, Wenz LS, Kruger V, Lehmann W, Muller JM, Goroncy L, Zufall N, Lithgow T, Guiard B, Chacinska A, Wagner R, Meisinger C, Pfanner N (2011a) The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J Cell Biol 194:387–395. doi:10.1083/jcb.201102044 CrossRefGoogle Scholar
  21. Becker T, Wenz LS, Thornton N, Stroud D, Meisinger C, Wiedemann N, Pfanner N (2011b) Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J Mol Biol 405:113–124. doi:10.1016/j.jmb.2010.11.002 CrossRefGoogle Scholar
  22. Becker T, Boettinger L, Pfanner N (2012) Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci 37:85–91. doi:10.1016/j.tibs.2011.11.004 CrossRefGoogle Scholar
  23. Benz R (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes - review on mitochondrial porins. Biochim Biophys Acta -Rev Biomembranes 1197:167–196. doi:10.1016/0304-4157(94)90004-3 CrossRefGoogle Scholar
  24. Bihlmaier K, Mesecke N, Terziyska N, Bien M, Hell K, Herrmann JM (2007) The disulfide relay system of mitochondria is connected to the respiratory chain. J Cell Biol 179:389–395. doi:10.1083/jcb.200707123 CrossRefGoogle Scholar
  25. Blachly-Dyson E, Forte M (2001) VDAC channels. Iubmb Life 52:113–118. doi:10.1080/15216540152845902 CrossRefGoogle Scholar
  26. Bohnert M, Rehling P, Guiard B, Herrmann JM, Pfanner N, van der Laan M (2010) Cooperation of stop-transfer and conservative sorting mechanisms in mitochondrial protein transport. Curr Biol 20:1227–1232. doi:10.1016/j.cub.2010.05.058 CrossRefGoogle Scholar
  27. Bohnert M, Wenz LS, Zerbes RM, Horvath SE, Stroud DA, von der Malsburg K, Muller JM, Oeljeklaus S, Perschil I, Warscheid B, Chacinska A, Veenhuis M, van der Klei IJ, Daum G, Wiedemann N, Becker T, Pfanner N, van der Laan M (2012) Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Mol Biol Cell 23:3948–3956. doi:10.1091/mbc.E12-04-0295 CrossRefGoogle Scholar
  28. Bohnert M, Pfanner N, van der Laan M (2015) Mitochondrial machineries for insertion of membrane proteins. Curr Opin Struct Biol 33:92–102. doi:10.1016/j.sbi.2015.07.013 CrossRefGoogle Scholar
  29. Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, Royes P, Pon LA (2003) A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell 14:4618–4627. doi:10.1091/mbc.E03-04-0225 CrossRefGoogle Scholar
  30. Bomer U, Meijer M, Guiard B, Dietmeier K, Pfanner N, Rassow J (1997) The sorting route of cytochrome b2 branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J Biol Chem 272:30439–30446. doi:10.1074/jbc.272.48.30439 CrossRefGoogle Scholar
  31. Botelho SC, Osterberg M, Reichert AS, Yamano K, Bjorkholm P, Endo T, von Heijne G, Kim H (2011) TIM23-mediated insertion of transmembrane alpha-helices into the mitochondrial inner membrane. Embo J 30:1003–1011. doi:10.1038/emboj.2011.29 CrossRefGoogle Scholar
  32. Brix J, Rudiger S, Bukau B, Schneider-Mergener J, Pfanner N (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem 274:16522–16530. doi:10.1074/jbc.274.23.16522 CrossRefGoogle Scholar
  33. Campo ML, Kinnally KW, Tedeschi H (1992) The effect of antimycin-A on mouse-liver inner mitochondrial-membrane channel activity. J Biol Chem 267:8123–8127Google Scholar
  34. Cao W, Douglas MG (1995) Biogenesis of ISP6, a small carboxyl-terminal anchored protein of the receptor complex of the mitochondrial outer membrane. J Biol Chem 270:5674–5679. doi:10.1074/jbc.270.10.5674 CrossRefGoogle Scholar
  35. Chacinska A, Rehling P, Guiard B, Frazier AE, Schulze-Specking A, Pfanner N, Voos W, Meisinger C (2003) Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM-TIM-preprotein supercomplex. EMBO J 22:5370–5381. doi:10.1093/emboj/cdg532 CrossRefGoogle Scholar
  36. Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuán Szklarz LK, Schulze-Specking A, Truscott KN, Guiard B, Meisinger C, Pfanner N (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23:3735–3746. doi:10.1038/sj.emboj.7600389 CrossRefGoogle Scholar
  37. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, Sickmann A, Meyer HE, Truscott KN, Guiard B, Pfanner N, Rehling P (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829. doi:10.1016/j.cell.2005.01.011 CrossRefGoogle Scholar
  38. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644. doi:10.1016/j.cell.2009.08.005 CrossRefGoogle Scholar
  39. Checchetto V, Reina S, Magri A, Szabo I, De Pinto V (2014) Recombinant human voltage dependent anion selective channel isoform 3 (hVDAC3) forms pores with a very small conductance. Cell Physiol Biochem 34:842–853. doi:10.1159/000363047 Google Scholar
  40. Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460. doi:10.1126/science.1114021 CrossRefGoogle Scholar
  41. Cheng EHY, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517. doi:10.1126/science.1083995 CrossRefGoogle Scholar
  42. Chich JF, Goldschmidt D, Thieffry M, Henry JP (1991) A peptide-sensitive channel of large conductance is localized on mitochondrial outer-membrane. Eur J Biochem 196:29–35. doi:10.1111/j.1432-1033.1991.tb15781.x CrossRefGoogle Scholar
  43. Choudhary OP, Ujwal R, Kowallis W, Coalson R, Abramson J, Grabe M (2010) The electrostatics of VDAC: implications for selectivity and gating. J Mol Biol 396:580–592. doi:10.1016/j.jmb.2009.12.006 CrossRefGoogle Scholar
  44. Claypool SM, McCaffery JM, Koehler CM (2006) Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J Cell Biol 174:379–390. doi:10.1083/jcb.200605043 CrossRefGoogle Scholar
  45. Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochim Biophys Acta -Biomembranes 1818:1457–1465. doi:10.1016/j.bbamem.2011.12.026 CrossRefGoogle Scholar
  46. Colombini M, Mannella CA (2012) VDAC, the early days. Biochim Biophys Acta -Biomembranes 1818:1438–1443. doi:10.1016/j.bbamem.2011.11.014 CrossRefGoogle Scholar
  47. Colombini M, Blachly-Dyson E, Forte M (1996) VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4:169–202CrossRefGoogle Scholar
  48. Darshi M, Trinh KN, Murphy AN, Taylor SS (2012) Targeting and import mechanism of coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) into the mitochondrial intermembrane space. J Biol Chem 287:12. doi:10.1074/jbc.M112.387696 CrossRefGoogle Scholar
  49. De Pinto V, Guarino F, Guarnera A, Messina A, Reina S, Tomasello FM, Palermo V, Mazzoni C (2010) Characterization of human VDAC isoforms: a peculiar function for VDAC3? Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797:1268–1275. doi:10.1016/j.bbabio.2010.01.031 CrossRefGoogle Scholar
  50. Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B, Jonas EA, Kinnally KW (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432. doi:10.1091/mbc.E04-12-1111 CrossRefGoogle Scholar
  51. Dejean LM, Ryu S-Y, Martinez-Caballero S, Teijido O, Peixoto PM, Kinnally KW (2010) MAC and Bcl-2 family proteins conspire in a deadly plot. Biochim Biophys Acta -Bioenergetics 1797:1231–1238. doi:10.1016/j.bbabio.2010.01.007 CrossRefGoogle Scholar
  52. Demishtein-Zohary K, Marom M, Neupert W, Mokranjac D, Azem A (2015) GxxxG motifs hold the TIM23 complex together. Febs J 282:2178–2186. doi:10.1111/febs.13266 CrossRefGoogle Scholar
  53. Diekert K, Kispal G, Guiard B, Lill R (1999) An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci 96:11752–11757. doi:10.1073/pnas.96.21.11752 CrossRefGoogle Scholar
  54. Dienhart MK, Stuart RA (2008) The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol Biol Cell 19:3934–3943. doi:10.1091/mbc.E08-04-0402 CrossRefGoogle Scholar
  55. Dietmeier K, Honlinger A, Bomer U, Dekker PJ, Eckerskorn C, Lottspeich F, Kubrich M, Pfanner N (1997) Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388:195–200. doi:10.1038/40663 CrossRefGoogle Scholar
  56. Dietrich A, Small I, Cosset A, Weil JH, MarechalDrouard L (1996) Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 78:518–529. doi:10.1016/0300-9084(96)84758-4 CrossRefGoogle Scholar
  57. Dimmer KS, Papić D, Schumann B, Sperl D, Krumpe K, Walther DM, Rapaport D (2012) A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J Cell Sci 125:3464–3473. doi:10.1242/jcs.103804 CrossRefGoogle Scholar
  58. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318. doi:10.1126/science.1127895 CrossRefGoogle Scholar
  59. Dudek J, Rehling P, van der Laan M (2013) Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta, Mol Cell Res 1833:274–285. doi:10.1016/j.bbamcr.2012.05.028 CrossRefGoogle Scholar
  60. Dukanovic J, Rapaport D (2011) Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim Biophys Acta - Biomembranes 1808:971–980. doi:10.1016/j.bbamem.2010.06.021 CrossRefGoogle Scholar
  61. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257. doi:10.1126/science.1094884 CrossRefGoogle Scholar
  62. Eddy MT, Andreas L, Teijido O, Su YC, Clark L, Noskov SY, Wagner G, Rostovtseva TK, Griffin RG (2015) Magic angle spinning nuclear magnetic resonance characterization of voltage-dependent anion channel gating in two-dimensional lipid crystalline bilayers. Biochemistry-Us 54:994–1005. doi:10.1021/bi501260r CrossRefGoogle Scholar
  63. Ellenrieder L, Martensson CU, Becker T (2015) Biogenesis of mitochondrial outer membrane proteins, problems and diseases. Biol Chem 396:1199–1213. doi:10.1515/hsz-2015-0170 CrossRefGoogle Scholar
  64. Endres M, Neupert W, Brunner M (1999) Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex. EMBO J 18:3214–3221. doi:10.1093/emboj/18.12.3214 CrossRefGoogle Scholar
  65. Entelis NS, Kieffer S, Kolesnikova OA, Martin RP, Tarassov IA (1998) Structural requirements of tRNA(Lys) for its import into yeast mitochondria. Proc Natl Acad Sci U S A 95:2838–2843. doi:10.1073/pnas.95.6.2838 CrossRefGoogle Scholar
  66. Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA (2001) 5 S rRNA and tRNA import into human mitochondria - comparison of in vitro requirements. J Biol Chem 276:45642–45653. doi:10.1074/jbc.M103906200 CrossRefGoogle Scholar
  67. Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I (2006) A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Gene Dev 20:1609–1620. doi:10.1101/gad.385706 CrossRefGoogle Scholar
  68. Fevre F, Chich JF, Lauquin GJM, Henry JP, Thieffry M (1990) Comparison of mitochondrial cationic channels in wild-type and porin-deficient mutant yeast. Febs Lett 262:201–204. doi:10.1016/0014-5793(90)80189-p CrossRefGoogle Scholar
  69. Fevre F, Henry JP, Thieffry M (1994) Reversible and irreversible effects of basic peptides on the mitochondrial cationic channel. Biophys J 66:1887–1894. doi:10.1016/S0006-3495(94)80982-8 CrossRefGoogle Scholar
  70. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324. doi:10.1016/S0968-0004(00)01609-1 CrossRefGoogle Scholar
  71. Fukada K, Zhang FJ, Vien A, Cashman NR, Zhu HN (2004) Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 3:1211–1223. doi:10.1074/mcp.M400094-MCP200 CrossRefGoogle Scholar
  72. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 14:1113–1126. doi:10.1074/mcp.M114.043083 CrossRefGoogle Scholar
  73. Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592:63–77. doi:10.1016/S0167-4889(02)00265-3 CrossRefGoogle Scholar
  74. Gebert N, Gebert M, Oeljeklaus S, von der Malsburg K, Stroud DA, Kulawiak B, Wirth C, Zahedi RP, Dolezal P, Wiese S, Simon O, Schulze-Specking A, Truscott KN, Sickmann A, Rehling P, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N (2011) Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol Cell 44:811–818. doi:10.1016/j.molcel.2011.09.025 CrossRefGoogle Scholar
  75. Gebert M, Schrempp SG, Mehnert CS, Heißwolf AK, Oeljeklaus S, Ieva R, Bohnert M, von der Malsburg K, Wiese S, Kleinschroth T, Hunte C, Meyer HE, Haferkamp I, Guiard B, Warscheid B, Pfanner N, van der Laan M (2012) Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. J Cell Biol 197:595–604. doi:10.1083/jcb.201110047 CrossRefGoogle Scholar
  76. Gerbeth C, Mikropoulou D, Meisinger C (2013) From inventory to functional mechanisms: regulation of the mitochondrial protein import machinery by phosphorylation. Febs J 280:4933–4942. doi:10.1111/febs.12445 CrossRefGoogle Scholar
  77. Gessmann D, Flinner N, Pfannstiel J, Schloesinger A, Schleiff E, Nussberger S, Mirus O (2011) Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry. Biochim Biophys Acta -Bioenergetics 1807:1647–1657. doi:10.1016/j.bbabio.2011.08.006 CrossRefGoogle Scholar
  78. Geula S, Naveed H, Liang J, Shoshan-Barmatz V (2012) Structure-based analysis of VDAC1 protein: defining oligomer contact sites. J Biol Chem 287:2179–2190. doi:10.1074/jbc.M111.268920 CrossRefGoogle Scholar
  79. Gincel D, Silberberg SD, Shoshan-Barmatz V (2000) Modulation of the voltage-dependent anion channel (VDAC) by glutamate. J Bioenerg Biomembr 32:571–583. doi:10.1023/A:1005670527340 CrossRefGoogle Scholar
  80. Glick BS, Beasley EM, Schatz G (1992) Protein sorting in mitochondria. Trends Biochem Sci 17:453–459. doi:10.1016/0968-0004(92)90487-T CrossRefGoogle Scholar
  81. Gold JA, Barg FK, Margo K (2014) Undergraduate students’ perspectives on primary care. J Prim Care Commun Health 5:279–283. doi:10.1177/2150131914534072 CrossRefGoogle Scholar
  82. Goncalves RP, Buzhynskyy N, Prima V, Sturgis JN, Scheuring S (2007) Supramolecular assembly of VDAC in native mitochondrial outer membranes. J Mol Biol 369:413–418. doi:10.1016/j.jmb.2007.03.063 CrossRefGoogle Scholar
  83. Goswami S, Adhya S (2006) The alpha-subunit of Leishmania F-1 ATP synthase hydrolyzes ATP in presence of tRNA. J Biol Chem 281:18914–18917. doi:10.1074/jbc.C600089200 CrossRefGoogle Scholar
  84. Gowher A, Smirnov A, Tarassov I, Entelis N (2013) Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase. Plos One 8:12. doi:10.1371/journal.pone.0066228 CrossRefGoogle Scholar
  85. Gray MW (2015) Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A 112:10133–10138. doi:10.1073/pnas.1421379112 CrossRefGoogle Scholar
  86. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481. doi:10.1126/science.283.5407.1476 CrossRefGoogle Scholar
  87. Grigoriev SM, Muro C, Dejean LM, Campo ML, Martinez-Caballero S, Kinnally KW (2004) Electrophysiological approaches to the study of protein translocation in mitochondria. Int Rev Cytol - Surv Cell Biol 238:227-+. doi:10.1016/s0074-7696(04)38005-8 Google Scholar
  88. Guo XW, Mannella CA (1993) Conformational change in the mitochondrial channel, Vdac, detected by electron cryomicroscopy. Biophys J 64:545–549. doi:10.1016/S0006-3495(93)81399-7 CrossRefGoogle Scholar
  89. Gurnev PA, Rostovtseva TK, Bezrukov SM (2011) Tubulin-blocked state of VDAC studied by polymer and ATP partitioning. Febs Lett 585:2363–2366. doi:10.1016/j.febslet.2011.06.008 CrossRefGoogle Scholar
  90. Hachiya N, Mihara K, Suda K, Horst M, Schatz G, Lithgow T (1995) Reconstitution of the initial steps of mitochondrial protein import. Nature 376:705–709. doi:10.1038/376705a0 CrossRefGoogle Scholar
  91. Hahne K, Haucke V, Ramage L, Schatz G (1994) Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments. Cell 79:829–839. doi:10.1016/0092-8674(94)90072-8 CrossRefGoogle Scholar
  92. Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C (2014) The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–372. doi:10.1016/j.cmet.2014.01.010 CrossRefGoogle Scholar
  93. Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011a) The mitochondrial contact site complex, a determinant of mitochondrial architecture. Embo J 30:4356–4370. doi:10.1038/emboj.2011.379 CrossRefGoogle Scholar
  94. Harner M, Neupert W, Deponte M (2011b) Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J 30:3232–3241. doi:10.1038/emboj.2011.235 CrossRefGoogle Scholar
  95. Harsman A, Kruger V, Bartsch P, Honigmann A, Schmidt O, Rao S, Meisinger C, Wagner R (2010) Protein conducting nanopores. J Phys-Cond Matt 22:21. doi:10.1088/0953-8984/22/45/454102 CrossRefGoogle Scholar
  96. Harsman A, Niemann M, Pusnik M, Schmidt O, Burmann BM, Hiller S, Meisinger C, Schneider A, Wagner R (2012) Bacterial origin of a mitochondrial outer membrane protein translocase new perspectives from comparative single channel electrophysiology. J Biol Chem 287:31437–31445. doi:10.1074/jbc.M112.392118 CrossRefGoogle Scholar
  97. Haucke V, Ocana CS, Hönlinger A, Tokatlidis K, Pfanner N, Schatz G (1997) Analysis of the sorting signals directing NADH-cytochrome b5 reductase to two locations within yeast mitochondria. Mol Cell Biol 17:4024–4032. doi:10.1128/mcb.17.7.4024 CrossRefGoogle Scholar
  98. Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA (1998) Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci U S A 95:2250–2255. doi:10.1073/pnas.95.5.2250 CrossRefGoogle Scholar
  99. Henry JP, Chich JF, Goldschmidt D, Thieffry M (1989a) Blockade of a mitochondrial cationic channel by an addressing peptid: an electrophysiological study. J Membrane Biol 112:139–147. doi:10.1007/bf01871275 CrossRefGoogle Scholar
  100. Henry JP, Chich JF, Goldschmidt D, Thieffry M (1989b) Ionic mitochondrial channels: characteristics and possible role in protein translocation. Biochimie 71:963–968. doi:10.1016/0300-9084(89)90078-3 CrossRefGoogle Scholar
  101. Herrmann JM, Neupert W, Stuart RA (1997) Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. Embo J 16:2217–2226. doi:10.1093/emboj/16.9.2217 CrossRefGoogle Scholar
  102. Hewitt VL, Heinz E, Shingu-Vazquez M, Qu Y, Jelicic B, Lo TL, Beilharz TH, Dumsday G, Gabriel K, Traven A, Lithgow T (2012) A model system for mitochondrial biogenesis reveals evolutionary rewiring of protein import and membrane assembly pathways. Proc Natl Acad Sci U S A 109:E3358–E3366. doi:10.1073/pnas.1206345109 CrossRefGoogle Scholar
  103. Hewitt VL, Gabriel K, Traven A (2014) The ins and outs of the intermembrane space: diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes. Biochim Biophys Acta 1840:1246–1253. doi:10.1016/j.bbagen.2013.08.013 CrossRefGoogle Scholar
  104. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature 395:516–521. doi:10.1038/26780 CrossRefGoogle Scholar
  105. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210. doi:10.1126/science.1161302 CrossRefGoogle Scholar
  106. Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membrane Biol 157:271–279. doi:10.1007/s002329900235 CrossRefGoogle Scholar
  107. Hoogenraad NJ, Ward LA, Ryan MT (2002) Import and assembly of proteins into mitochondria of mammalian cells. Biochim Biophys Acta, Mol Cell Res 1592:97–105. doi:10.1016/s0167-4889(02)00268-9 CrossRefGoogle Scholar
  108. Hulett JM, Lueder F, Chan NC, Perry AJ, Wolynec P, Likic VA, Gooley PR, Lithgow T (2008) The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex. J Mol Biol 376:694–704. doi:10.1016/j.jmb.2007.12.021 CrossRefGoogle Scholar
  109. Ieva R, Heisswolf AK, Gebert M, Vogtle FN, Wollweber F, Mehnert CS, Oeljeklaus S, Warscheid B, Meisinger C, van der Laan M, Pfanner N (2013) Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat Commun 4:2853. doi:10.1038/ncomms3853 CrossRefGoogle Scholar
  110. Ieva R, Schrempp SG, Opalinski L, Wollweber F, Hoss P, Heisswolf AK, Gebert M, Zhang Y, Guiard B, Rospert S, Becker T, Chacinska A, Pfanner N, van der Laan M (2014) Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol Cell 56:641–652. doi:10.1016/j.molcel.2014.10.010 CrossRefGoogle Scholar
  111. Juin P, Pelleschi M, Sagne C, Henry JP, Thieffry M, Vallette FM (1995) Involvement of the peptide sensitive channel in the translocation of basic peptides into mitochondria. Biochem Bioph Res Co 211:92–99. doi:10.1006/bbrc.1995.1782 CrossRefGoogle Scholar
  112. Juin P, Thieffry M, Henry JP, Vallette FM (1997) Relationship between the peptide-sensitive channel and the mitochondrial outer membrane protein translocation machinery. J Biol Chem 272:6044–6050CrossRefGoogle Scholar
  113. Kalousek F, Isaya G, Rosenberg LE (1992) Rat liver mitochondrial intermediate peptidase (MIP): purification and initial characterization. Embo J 11:2803–2809Google Scholar
  114. Kanaji S, Iwahashi J, Kida Y, Sakaguchi M, Mihara K (2000) Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol 151:277–288. doi:10.1083/jcb.151.2.277 CrossRefGoogle Scholar
  115. Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857–868. doi:10.1007/s10495-007-0722-z CrossRefGoogle Scholar
  116. Kinnally KW, Campo ML, Tedeschi H (1989) Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr 21:497–506. doi:10.1007/bf00762521 CrossRefGoogle Scholar
  117. Kinnally KW, Zorov D, Antonenko Y, Perini S (1991) Calcium modulation of mitochondrial inner membrane channel activity. Biochem Bioph Res Co 176:1183–1188. doi:10.1016/0006-291x(91)90410-9 CrossRefGoogle Scholar
  118. Kinnally KW, Zorov DB, Antonenko YN, Snyder SH, McEnery MW, Tedeschi H (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci U S A 90:1374–1378. doi:10.1073/pnas.90.4.1374 CrossRefGoogle Scholar
  119. Kinnally KW, Lohret TA, Campo ML, Mannella CA (1996) Perspectives on the mitochondrial multiple conductance channel. J Bioenerg Biomembr 28:115–123. doi:10.1007/Bf02110641 CrossRefGoogle Scholar
  120. Kinnally KW, Muro C, Campo ML (2000) MCC and PSC, the putative protein import channels of mitochondria. J Bioenerg Biomembr 32:47–54. doi:10.1023/a:1005560328334 CrossRefGoogle Scholar
  121. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. doi:10.1038/nature02229 CrossRefGoogle Scholar
  122. Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289:1931–1933. doi:10.1126/science.289.5486.1931 CrossRefGoogle Scholar
  123. Koley S, Adhya S (2013) A voltage-gated pore for translocation of tRNA. Biochem Bioph Res Co 439:23–29. doi:10.1016/j.bbrc.2013.08.036 CrossRefGoogle Scholar
  124. Koppel DA, Kinnally KW, Masters P, Forte M, Blachly-Dyson E, Mannella CA (1998) Bacterial expression and characterization of the mitochondrial outer membrane channel - effects of N-terminal modifications. J Biol Chem 273:13794–13800. doi:10.1074/jbc.273.22.13794 CrossRefGoogle Scholar
  125. Korner C, Barrera M, Dukanovic J, Eydt K, Harner M, Rabl R, Vogel F, Rapaport D, Neupert W, Reichert AS (2012) The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol Biol Cell 23:2143–2155. doi:10.1091/mbc.E11-10-0831 CrossRefGoogle Scholar
  126. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481. doi:10.1126/science.1175088 CrossRefGoogle Scholar
  127. Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. Embo J 22:1245–1254. doi:10.1093/emboj/cdg128 CrossRefGoogle Scholar
  128. Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet 15:143–154. doi:10.1093/hmg/ddi435 CrossRefGoogle Scholar
  129. Kovermann P, Truscott KN, Guiard B, Rehling P, Sepuri NB, Muller H, Jensen RE, Wagner R, Pfanner N (2002) Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell 9:363–373. doi:10.1016/s1097-2765(02)00446-x CrossRefGoogle Scholar
  130. Kunkele KP, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W (1998a) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93:1009–1019. doi:10.1016/s0092-8674(00)81206-4 CrossRefGoogle Scholar
  131. Kunkele KP, Juin P, Pompa C, Nargang FE, Henry JP, Neupert W, Lill R, Thieffry M (1998b) The isolated complex of the translocase of the outer membrane of mitochondria - characterization of the cation-selective and voltage-gated preprotein-conducting pore. J Biol Chem 273:31032–31039. doi:10.1074/jbc.273.47.31032 CrossRefGoogle Scholar
  132. Kushnareva YE, Campo ML, Kinnally KW, Sokolove PM (1999) Signal presequences increase mitochondrial permeability and open the multiple conductance channel. Arch Biochem Biophys 366:107–115. doi:10.1006/abbi.1999.1190 CrossRefGoogle Scholar
  133. Kuszak AJ, Jacobs D, Gurnev PA, Shiota T, Louis JM, Lithgow T, Bezrukov SM, Rostovtseva TK, Buchanan SK (2015) Evidence of distinct channel conformations and substrate binding affinities for the mitochondrial outer membrane protein translocase pore Tom40. J Biol Chem 290:26204–26217. doi:10.1074/jbc.M115.642173 CrossRefGoogle Scholar
  134. Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, Kruger V, Prinz C, Meisinger C, Guiard B, Wagner R, Pfanner N, Wiedemann N (2008) Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132:1011–1024. doi:10.1016/j.cell.2008.01.028 CrossRefGoogle Scholar
  135. Lee CM, Sedman J, Neupert W, Stuart RA (1999) The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem 274:20937–20942. doi:10.1074/jbc.274.30.20937 CrossRefGoogle Scholar
  136. Lee K, Kerner J, Hoppel CL (2011) Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 286:25655–25662. doi:10.1074/jbc.M111.228692 CrossRefGoogle Scholar
  137. Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M, Arava Y (2014) OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat Commun 5:10. doi:10.1038/ncomms6711 CrossRefGoogle Scholar
  138. Linden M, Karlsson G (1996) Identification of porin as a binding site for MAP2. Biochem Bioph Res Co 218:833–836. doi:10.1006/bbrc.1996.0148 CrossRefGoogle Scholar
  139. Liu J, Rone MB, Papadopoulos V (2006) Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem 281:38879–38893. doi:10.1074/jbc.M608820200 CrossRefGoogle Scholar
  140. Lohret TA, Kinnally KW (1995) Targeting peptides transiently block a mitochondrial channel. J Gen Physiol 106:49–49Google Scholar
  141. Lohret TA, Murphy RC, Drgon T, Kinnally KW (1996) Activity of the mitochondrial multiple conductance channel is independent of the adenine nucleotide translocator. J Biol Chem 271:4846–4849CrossRefGoogle Scholar
  142. Lohret TA, Jensen RE, Kinnally KW (1997) Tim23, a protein import component of the mitochondrial inner membrane, is required for normal activity of the multiple conductance channel, MCC. J Cell Biol 137:377–386. doi:10.1083/jcb.137.2.377 CrossRefGoogle Scholar
  143. Longen S, Woellhaf MW, Petrungaro C, Riemer J, Herrmann JM (2014) The disulfide relay of the intermembrane space oxidizes the ribosomal subunit mrp10 on its transit into the mitochondrial matrix. Dev Cell 28:30–42. doi:10.1016/j.devcel.2013.11.007 CrossRefGoogle Scholar
  144. Lueder F, Lithgow T (2009) The three domains of the mitochondrial outer membrane protein Mim1 have discrete functions in assembly of the TOM complex. Febs Lett 583:1475–1480. doi:10.1016/j.febslet.2009.03.064 CrossRefGoogle Scholar
  145. Lytovchenko O, Melin J, Schulz C, Kilisch M, Hutu DP, Rehling P (2013) Signal recognition initiates reorganization of the presequence translocase during protein import. Embo J 32:886–898. doi:10.1038/emboj.2013.23 CrossRefGoogle Scholar
  146. Magalhaes PJ, Andreu AL, Schon EA (1998) Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol Biol Cell 9:2375–2382CrossRefGoogle Scholar
  147. Malhotra K, Sathappa M, Landin JS, Johnson AE, Alder NN (2013) Structural changes in the mitochondrial Tim23 channel are coupled to the proton-motive force. Nat Struct Mol Biol 20:965-+. doi:10.1038/nsmb.2613 CrossRefGoogle Scholar
  148. Mannella CA (1997) On the structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenerg Biomembr 29:525–531. doi:10.1023/A:1022489832594 CrossRefGoogle Scholar
  149. Mannella CA (1998) Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 121:207–218. doi:10.1006/jsbi.1997.3954 CrossRefGoogle Scholar
  150. Mannella CA, Kinnally KW (2008) Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator. J Bioenerg Biomembr 40:149–155. doi:10.1007/s10863-008-9143-0 CrossRefGoogle Scholar
  151. Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW (2007) Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J Biol Chem 282:3584–3593. doi:10.1074/jbc.M607551200 CrossRefGoogle Scholar
  152. Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA, Kinnally KW (2009) Assembly of the Mitochondrial Apoptosis-induced Channel, MAC. J Biol Chem 284:12235–12245. doi:10.1074/jbc.M806610200 CrossRefGoogle Scholar
  153. Mehnert CS, Rampelt H, Gebert M, Oeljeklaus S, Schrempp SG, Kochbeck L, Guiard B, Warscheid B, van der Laan M (2014) The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 289:27352–27362. doi:10.1074/jbc.M114.556498 CrossRefGoogle Scholar
  154. Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU, Hutu DP, Voos W, Truscott KN, Chacinska A, Pfanner N, Rehling P (2006) Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312:1523–1526. doi:10.1126/science.1127628 CrossRefGoogle Scholar
  155. Meisinger C, Rissler M, Chacinska A, Szklarz LK, Milenkovic D, Kozjak V, Schonfisch B, Lohaus C, Meyer HE, Yaffe MP, Guiard B, Wiedemann N, Pfanner N (2004) The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell 7:61–71. doi:10.1016/j.devcel.2004.06.003 CrossRefGoogle Scholar
  156. Meisinger C, Wiedemann N, Rissler M, Strub A, Milenkovic D, Schonfisch B, Muller H, Kozjak V, Pfanner N (2006) Mitochondrial protein sorting: differentiation of beta-barrel assembly by Tom7-mediated segregation of Mdm10. J Biol Chem 281:22819–22826. doi:10.1074/jbc.M602679200 CrossRefGoogle Scholar
  157. Meisinger C, Pfannschmidt S, Rissler M, Milenkovic D, Becker T, Stojanovski D, Youngman MJ, Jensen RE, Chacinska A, Guiard B, Pfanner N, Wiedemann N (2007) The morphology proteins Mdm12/Mmm1 function in the major beta-barrel assembly pathway of mitochondria. Embo J 26:2229–2239. doi:10.1038/sj.emboj.7601673 CrossRefGoogle Scholar
  158. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS (2011) The human mitochondrial transcriptome. Cell 146:645–658. doi:10.1016/j.cell.2011.06.051 CrossRefGoogle Scholar
  159. Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, Sasarman F, Weraarpachai W, Shoubridge EA, Warscheid B, Rehling P (2012) MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528–1541. doi:10.1016/j.cell.2012.11.053 CrossRefGoogle Scholar
  160. Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A (2011) Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 39:E115–U152. doi:10.1093/nar/gkr517 CrossRefGoogle Scholar
  161. Model K, Meisinger C, Kuehlbrandt W (2008) Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383:1049–1057. doi:10.1016/j.jmb.2008.07.087 CrossRefGoogle Scholar
  162. Mokranjac D, Popov-Celeketic D, Hell K, Neupert W (2005) Role of Tim21 in mitochondrial translocation contact sites. J Biol Chem 280:23437–23440. doi:10.1074/jbc.C500135200 CrossRefGoogle Scholar
  163. Mori M, Miura S, Tatibana M, Cohen PP (1980) Characterization of a protease apparently involved in processing of pre-ornithine transcarbamylase of rat liver. Proc Natl Acad Sci U S A 77:7044–7048. doi:10.1073/pnas.77.12.7044 CrossRefGoogle Scholar
  164. Mukherjee S, Basu S, Home P, Dhar G, Adhya S (2007) Necessary and sufficient factors for the import of transfer RNA into the kinetoplast mitochondrion. Embo Rep 8:589–595. doi:10.1038/sj.embor.7400979 CrossRefGoogle Scholar
  165. Muller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A (2008) Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space. Mol Biol Cell 19:226–236. doi:10.1091/mbc.E07-08-0814 CrossRefGoogle Scholar
  166. Muro C, Grigoriev SM, Pietkiewicz D, Kinnally KW, Campo ML (2003) Comparison of the TIM and TOM channel activities of the mitochondrial protein import complexes. Biophys J 84:2981–2989. doi:10.1016/S0006-3495(03)70024-1 CrossRefGoogle Scholar
  167. Murphy RC, Diwan JJ, King M, Kinnally KW (1998) Two high conductance channels of the mitochondrial inner membrane are independent of the human mitochondrial genome. Febs Lett 425:259–262. doi:10.1016/s0014-5793(98)00245-2 CrossRefGoogle Scholar
  168. Nasrallah CM, Horvath TL (2014) Mitochondrial dynamics in the central regulation of metabolism. Nat Rev Endocrinol 10:650–658. doi:10.1038/nrendo.2014.160 CrossRefGoogle Scholar
  169. Neupert W (2012) A mitochondrial odyssey. In: Kornberg RD (ed) Annual Review of Biochemistry, Vol 81, vol 81. Annual Review of Biochemistry. pp 1-33. doi:10.1146/annurev-biochem-083109-171531
  170. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749. doi:10.1146/annurev.biochem.76.052705.163409 CrossRefGoogle Scholar
  171. Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A (2013) Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 13:548–558. doi:10.1016/j.mito.2012.05.004 CrossRefGoogle Scholar
  172. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159. doi:10.1016/j.cell.2012.02.035 CrossRefGoogle Scholar
  173. Nunnari J, Fox T, Walter P (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004. doi:10.1126/science.8266095 CrossRefGoogle Scholar
  174. Okamoto H, Miyagawa A, Shiota T, Tamura Y, Endo T (2014) Intramolecular disulfide bond of Tim22 protein maintains integrity of the TIM22 complex in the mitochondrial inner membrane*. J Biol Chem 289:4827–4838. doi:10.1074/jbc.M113.543264 CrossRefGoogle Scholar
  175. Okazaki M, Kurabayashi K, Asanuma M, Saito Y, Dodo K, Sodeoka M (2015) VDAC3 gating is activated by suppression of disulfide-bond formation between the N-terminal region and the bottom of the pore. Biochim Biophys Acta 1848:3188–3196. doi:10.1016/j.bbamem.2015.09.017 CrossRefGoogle Scholar
  176. Olson GE, Winfrey VP (1990) Mitochondria-cytoskeleton interactions in the sperm midpiece. J Struct Biol 103:13–22. doi:10.1016/1047-8477(90)90081-M CrossRefGoogle Scholar
  177. Opalinska M, Meisinger C (2015) Metabolic control via the mitochondrial protein import machinery. Curr Opin Cell Biol 33:42–48. doi:10.1016/j.ceb.2014.11.001 CrossRefGoogle Scholar
  178. Ott C, Ross K, Straub S, Thiede B, Gotz M, Goosmann C, Krischke M, Mueller MJ, Krohne G, Rudel T, Kozjak-Pavlovic V (2012) Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol Cell Biol 32:1173–1188. doi:10.1128/MCB.06388-11 CrossRefGoogle Scholar
  179. Ou WJ, Ito A, Okazaki H, Omura T (1989) Purification and characterization of a processing protease from rat liver mitochondria. Embo J 8:2605–2612Google Scholar
  180. Pavlov EV, Priault M, Pietkiewicz D, Cheng EHY, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155:725–731. doi:10.1083/jcb.200107057 CrossRefGoogle Scholar
  181. Pavlov E, Grigoriev SM, Dejean LM, Zweihorn CL, Mannella CA, Kinnally KW (2005) The mitochondrial channel VDAC has a cation-selective open state. Biochim Biophys Acta -Bioenergetics 1710:96–102. doi:10.1016/j.bbabio.2005.09.006 CrossRefGoogle Scholar
  182. Peixoto PM, Martinez-Caballero S, Grigoriev SM, Kinnally KW, Campo ML (2004) The ins and outs of mitochondrial protein import from an electrophysiological point of view. In: Recent Research Developments in Biophysics, vol 3. Trasnworld research network ed, pp 413–474Google Scholar
  183. Peixoto PMV, Grana F, Roy TJ, Dunn CD, Flores M, Jensen RE, Campo ML (2007) Awaking TIM22, a dynamic ligand-gated channel for protein insertion in the mitochondrial inner membrane. J Biol Chem 282:18694–18701. doi:10.1074/jbc.M700775200 CrossRefGoogle Scholar
  184. Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial-membrane contains ion-conducting channels similar to those found in bacteria. Febs Lett 259:137–143. doi:10.1016/0014-5793(89)81513-3 CrossRefGoogle Scholar
  185. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T, Jakobs S, Ji J, Kozjak-Pavlovic V, Meisinger C, Odgren PR, Park SK, Rehling P, Reichert AS, Sheikh MS, Taylor SS, Tsuchida N, van der Bliek AM, van der Klei IJ, Weissman JS, Westermann B, Zha J, Neupert W, Nunnari J (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol 204:1083–1086. doi:10.1083/jcb.201401006 CrossRefGoogle Scholar
  186. Plotz M, Gillissen B, Hossini AM, Daniel PT, Eberle J (2012) Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ 19:1928–1938. doi:10.1038/cdd.2012.71 CrossRefGoogle Scholar
  187. Popov-Celeketic D, Mapa K, Neupert W, Mokranjac D (2008a) Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria. Embo J 27:1469–1480. doi:10.1038/emboj.2008.79 Google Scholar
  188. Popov-Celeketic J, Waizenegger T, Rapaport D (2008b) Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. J Mol Biol 376:671–680. doi:10.1016/j.jmb.2007.12.006 CrossRefGoogle Scholar
  189. Popp B, Court DA, Benz R, Neupert W, Lill R (1996) The role of the N and C termini of recombinant Neurospora mitochondrial porin in channel formation and voltage-dependent gating. J Biol Chem 271:13593–13599CrossRefGoogle Scholar
  190. Puranam RS, Attardi G (2001) The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21:548–561. doi:10.1128/Mcb.21.2.548-561.2001 CrossRefGoogle Scholar
  191. Pusnik M, Charriere F, Maser P, Waller RF, Dagley MJ, Lithgow T, Schneider A (2009) The single mitochondrial porin of trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane. Mol Biol Evol 26:671–680. doi:10.1093/molbev/msn288 CrossRefGoogle Scholar
  192. Qiu J, Wenz LS, Zerbes RM, Oeljeklaus S, Bohnert M, Stroud DA, Wirth C, Ellenrieder L, Thornton N, Kutik S, Wiese S, Schulze-Specking A, Zufall N, Chacinska A, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N, Becker T (2013) Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154:596–608. doi:10.1016/j.cell.2013.06.033 CrossRefGoogle Scholar
  193. Rao S, Gerbeth C, Harbauer A, Mikropoulou D, Meisinger C, Schmidt O (2011) Signaling at the gate: phosphorylation of the mitochondrial protein import machinery. Cell Cycle 10:2083–2090. doi:10.4161/cc.10.13.16054 CrossRefGoogle Scholar
  194. Rapaport D (2003) Finding the right organelle. targeting signals in mitochondrial outer-membrane proteins. Embo Rep 4:948–952. doi:10.1038/sj.embor.embor937 CrossRefGoogle Scholar
  195. Rapaport D (2005) How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane? J Cell Biol 171:419–423. doi:10.1083/jcb.200507147 CrossRefGoogle Scholar
  196. Reddy PH (2013) Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer’s disease? Biochim Biophys Acta -Mol Basis Dis 1832:67–75. doi:10.1016/j.bbadis2012.09.003 CrossRefGoogle Scholar
  197. Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, Kuhlbrandt W, Wagner R, Truscott KN, Pfanner N (2003) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–1751. doi:10.1126/science.1080945 CrossRefGoogle Scholar
  198. Reinhold R, Kruger V, Meinecke M, Schulz C, Schmidt B, Grunau SD, Guiard B, Wiedemann N, van der Laan M, Wagner R, Rehling P, Dudek J (2012) The channel-forming Sym1 protein is transported by the TIM23 complex in a presequence-independent manner. Mol Cell Biol 32:5009–5021. doi:10.1128/MCB.00843-12 CrossRefGoogle Scholar
  199. Rinehart J, Krett B, Rubio MAT, Alfonzo JD, Soll D (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Gene Dev 19:583–592. doi:10.1101/gad.1269305 CrossRefGoogle Scholar
  200. Roise D, Schatz G (1988) Mitochondrial presequences. J Biol Chem 263:4509–4511Google Scholar
  201. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan JJ, Ye XY, Blonder J, Veenstra T, Papadopoulos V (2012) Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol 26:1868–1882. doi:10.1210/me.2012-1159 CrossRefGoogle Scholar
  202. Rospert S, Dubaquie Y, Gautschi M (2002) Nascent-polypeptide-associated complex. Cell Molec Life Sci : CMLS 59:1632–1639. doi:10.1007/PL00012490 CrossRefGoogle Scholar
  203. Rostovtseva T, Colombini M (1996) ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 271:28006–28008. doi:10.1074/jbc.271.45.28006 CrossRefGoogle Scholar
  204. Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM (2004) Bid, but not Bax, regulates VDAC channels. J Biol Chem 279:13575–13583. doi:10.1074/jbc.M310593200 CrossRefGoogle Scholar
  205. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci 105:18746–18751. doi:10.1073/pnas.0806303105 CrossRefGoogle Scholar
  206. Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, Lee JC, Bezrukov SM (2015) alpha-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in parkinson disease. J Biol Chem 290:18467–18477. doi:10.1074/jbc.M115.641746 CrossRefGoogle Scholar
  207. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13:607–625. doi:10.1038/nrm3440 CrossRefGoogle Scholar
  208. Rubio MAT, Rinehart JJ, Krett B, Duvezin-Caubet S, Reichert AS, Soll D, Alfonzo JD (2008) Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc Natl Acad Sci U S A 105:9186–9191. doi:10.1073/pnas.0804283105 CrossRefGoogle Scholar
  209. Ryu S-Y, Peixoto PM, Teijido O, Dejean LM, Kinnally KW (2010) Role of mitochondrial ion channels in cell death. Biofactors 36:255–263. doi:10.1002/biof.101 CrossRefGoogle Scholar
  210. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274CrossRefGoogle Scholar
  211. Salinas T, Duchene AM, Delage L, Nilsson S, Glaser E, Zaepfel M, Marechal-Drouard L (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 103:18362–18367. doi:10.1073/pnas.0606449103 CrossRefGoogle Scholar
  212. Salinas T, Duchene AM, Marechal-Drouard L (2008) Recent advances in tRNA mitochondrial import. Trends Biochem Sci 33:320–329. doi:10.1016/j.tibs.2008.04.010 CrossRefGoogle Scholar
  213. Salinas T, El Farouk-Ameqrane S, Ubrig E, Sauter C, Duchene A-M, Marechal-Drouard L (2014) Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Res 42:9937–9948. doi:10.1093/nar/gku728 CrossRefGoogle Scholar
  214. Salinas-Giege T, Giege R, Giege P (2015) tRNA biology in mitochondria. Int J Mol Sci 16:4518–4559. doi:10.3390/ijms16034518 CrossRefGoogle Scholar
  215. Sampson MJ, Lovell RS, Craigen WJ (1997) The murine voltage-dependent anion channel gene family - conserved structure and function. J Biol Chem 272:18966–18973. doi:10.1074/jbc.272.30.18966 CrossRefGoogle Scholar
  216. Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membrane Biol 30:99–120. doi:10.1007/Bf01869662 CrossRefGoogle Scholar
  217. Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11:655–667. doi:10.1038/nrm2959 CrossRefGoogle Scholar
  218. Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP, Stojanovski D, Schonfisch B, Guiard B, Sickmann A, Pfanner N, Meisinger C (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144:227–239. doi:10.1016/j.cell.2010.12.015 CrossRefGoogle Scholar
  219. Schneider A (2011) Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem 80:1033–1053. doi:10.1146/annurev-biochem-060109-092838 CrossRefGoogle Scholar
  220. Schulz C, Rehling P (2014) Remodelling of the active presequence translocase drives motor-dependent mitochondrial protein translocation. Nat Commun 5:4349. doi:10.1038/ncomms5349 Google Scholar
  221. Schulz C, Lytovchenko O, Melin J, Chacinska A, Guiard B, Neumann P, Ficner R, Jahn O, Schmidt B, Rehling P (2011) Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex. J Cell Biol 195:643–656. doi:10.1083/jcb.201105098 CrossRefGoogle Scholar
  222. Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403. doi:10.1126/science.202030 CrossRefGoogle Scholar
  223. Seidman D, Johnson D, Gerbasi V, Golden D, Orlando R, Hajduk S (2012) Mitochondrial membrane complex that contains proteins necessary for tRNA import in Trypanosoma brucei. J Biol Chem 287:8892–8903. doi:10.1074/jbc.M111.300186 CrossRefGoogle Scholar
  224. Shimizu S, Tsujimoto Y (2000) Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci U S A 97:577–582. doi:10.1073/pnas.97.2.577 CrossRefGoogle Scholar
  225. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. doi:10.1038/20959 CrossRefGoogle Scholar
  226. Shimizu S, Narita M, Tsujimoto Y (2000) BcL-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC (vol 399, pg 483, 1999). Nature 407:767–U718. doi:10.1038/35037638 CrossRefGoogle Scholar
  227. Shiota T, Mabuchi H, Tanaka-Yamano S, Yamano K, Endo T (2011) In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc Natl Acad Sci U S A 108:15179–15183. doi:10.1073/pnas.1105921108 CrossRefGoogle Scholar
  228. Shiota T, Imai K, Qiu J, Hewitt VL, Tan K, Shen H-H, Sakiyama N, Fukasawa Y, Hayat S, Kamiya M, Elofsson A, Tomii K, Horton P, Wiedemann N, Pfanner N, Lithgow T, Endo T (2015) Molecular architecture of the active mitochondrial protein gate. Science 349:1544–1548. doi:10.1126/science.aac6428 CrossRefGoogle Scholar
  229. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285. doi:10.1016/j.mam.2010.03.002 CrossRefGoogle Scholar
  230. Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS (2015) The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta -Biomembranes 1848:2547–2575. doi:10.1016/j.bbamem.2014.10.040 CrossRefGoogle Scholar
  231. Smirnov A, Comte C, Mager-Heckel A-M, Addis V, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I (2010) Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J Biol Chem 285:30792–30803. doi:10.1074/jbc.M110.151183 CrossRefGoogle Scholar
  232. Smirnov A, Entelis N, Martin RP, Tarassov I (2011) Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18. Gene Dev 25:1289–1305. doi:10.1101/gad.624711 CrossRefGoogle Scholar
  233. Smith AC, Blackshaw JA, Robinson AJ (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res 40:D1160–D1167. doi:10.1093/nar/gkr1101 CrossRefGoogle Scholar
  234. Sokol AM, Sztolsztener ME, Wasilewski M, Heinz E, Chacinska A (2014) Mitochondrial protein translocases for survival and wellbeing. Febs Lett 588:2484–2495. doi:10.1016/j.febslet.2014.05.028 CrossRefGoogle Scholar
  235. Sollner T, Rassow J, Wiedmann M, Schlossmann J, Keil P, Neupert W, Pfanner N (1992) Mapping of the protein import machinery in the mitochondrial outer-membrane by cross-linking of translocation intermediates. Nature 355:84–87. doi:10.1038/355084a0 CrossRefGoogle Scholar
  236. Song J, Tamura Y, Yoshihisa T, Endo T (2014) A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. Embo Rep 15:670–677. doi:10.1002/embr.201338142 Google Scholar
  237. Sorgato MC, Moran O (1993) Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol 28:127–171. doi:10.3109/10409239309086793 CrossRefGoogle Scholar
  238. Stroud DA, Becker T, Qiu J, Stojanovski D, Pfannschmidt S, Wirth C, Hunte C, Guiard B, Meisinger C, Pfanner N, Wiedemann N (2011) Biogenesis of mitochondrial beta-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol Biol Cell 22:2823–2833. doi:10.1091/mbc.E11-02-0148 CrossRefGoogle Scholar
  239. Szabo I, Zoratti M (1992) The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr 24:111–117. doi:10.1007/bf00769537 CrossRefGoogle Scholar
  240. Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94:519–608. doi:10.1152/physrev.00021.2013 CrossRefGoogle Scholar
  241. Szabo I, Bathori G, Tombola F, Coppola A, Schmehl I, Brini M, Ghazi A, De Pinto V, Zoratti M (1998) Double-stranded DNA can be translocated across a planar membrane containing purified mitochondrial porin. Faseb J 12:495–502Google Scholar
  242. Tamura Y, Harada Y, Shiota T, Yamano K, Watanabe K, Yokota M, Yamamoto H, Sesaki H, Endo T (2009) Tim23-Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. J Cell Biol 184:129–141. doi:10.1083/jcb.200808068 CrossRefGoogle Scholar
  243. Tan WZ, Colombini M (2007) VDAC closure increases calcium ion flux. Biochim Biophys Acta -Biomembranes 1768:2510–2515. doi:10.1016/j.bbamem.2007.06.002 CrossRefGoogle Scholar
  244. Tarassov I, Entelis N, Martin RP (1995) An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic transfer-rna. J Mol Biol 245:315–323. doi:10.1006/jmbi.1994.0026 CrossRefGoogle Scholar
  245. Taylor GK, Kim YB, Forbes AJ, Meng F, McCarthy R, Kelleher NL (2003) Web and database software for identification of intact proteins using “top down” mass spectrometry. Anal Chem 75:4081–4086. doi:10.1021/ac0341721 CrossRefGoogle Scholar
  246. Teijido O, Ujwal R, Hillerdal CO, Kullman L, Rostovtseva TK, Abramson J (2012) Affixing N-terminal alpha-helix to the wall of the voltage-dependent anion channel does not prevent its voltage gating. J Biol Chem 287:11437–11445. doi:10.1074/jbc.M111.314229 CrossRefGoogle Scholar
  247. Teixeira PF, Glaser E (2013) Processing peptidases in mitochondria and chloroplasts. Biochim Biophys Acta 1833:360–370. doi:10.1016/j.bbamcr.2012.03.012 CrossRefGoogle Scholar
  248. Thieffry M, Chich JF, Goldschmidt D, Henry JP (1988) Incorporation in lipid bilayers of a large conductance cationic channel from mitochondrial membranes. Embo J 7:1449–1454Google Scholar
  249. Thieffry M, Neyton J, Pelleschi M, Fevre F, Henry JP (1992) Properties of the mitochondrial peptide-sensitive cationic channel studied in planar bilayers and patches of giant liposomes. Biophys J 63:333–339. doi:10.1016/S0006-3495(92)81626-0 CrossRefGoogle Scholar
  250. Thornton N, Stroud DA, Milenkovic D, Guiard B, Pfanner N, Becker T (2010) Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. J Mol Biol 396:540–549. doi:10.1016/j.jmb.2009.12.026 CrossRefGoogle Scholar
  251. Tommassen J (2010) Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology 156:2587–2596. doi:10.1099/mic.0.042689-0 CrossRefGoogle Scholar
  252. Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJM, Rassow J, Pfanner N, Wagner R (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol 8:1074–1082. doi:10.1038/nsb726 CrossRefGoogle Scholar
  253. Tschopp F, Charriere F, Schneider A (2011) In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import. Embo Rep 12:825–832. doi:10.1038/embor.2011.111 CrossRefGoogle Scholar
  254. Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping PP, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 angstrom resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105:17742–17747. doi:10.1073/pnas.0809634105 CrossRefGoogle Scholar
  255. Vallette FM, Juin P, Pelleschi M, Henry JP (1994) Basic peptides can be imported into yeast mitochondria by two distinct targeting pathways: involvement of the peptide-sensitive channel of the outer-membrane. J Biol Chem 269:13367–13374Google Scholar
  256. van der Laan M, Meinecke M, Dudek J, Hutu DP, Lind M, Perschil I, Guiard B, Wagner R, Pfanner N, Rehling P (2007) Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat Cell Biol 9:1152–1159. doi:10.1038/ncb1635 CrossRefGoogle Scholar
  257. Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci U S A 97:4666–4671. doi:10.1073/pnas.090082297 CrossRefGoogle Scholar
  258. Veenman L, Shandalov Y, Gavish M (2008) VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 40:199–205. doi:10.1007/s10863-008-9142-1 CrossRefGoogle Scholar
  259. Villinger S, Giller K, Bayrhuber M, Lange A, Griesinger C, Becker S, Zweckstetter M (2014) Nucleotide interactions of the human voltage-dependent anion channel. J Biol Chem 289:13397–13406. doi:10.1074/jbc.M113.524173 CrossRefGoogle Scholar
  260. Voegtle FN, Meisinger C (2012) Sensing mitochondrial homeostasis: the protein import machinery takes control. Dev Cell 23:234–236. doi:10.1016/j.devcel.2012.07.018 CrossRefGoogle Scholar
  261. Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247. doi:10.1083/jcb.200605138 CrossRefGoogle Scholar
  262. von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D, Hutu DP, Zerbes RM, Schulze-Specking A, Meyer HE, Martinou JC, Rospert S, Rehling P, Meisinger C, Veenhuis M, Warscheid B, van der Klei IJ, Pfanner N, Chacinska A, van der Laan M (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707. doi:10.1016/j.devcel.2011.08.026 CrossRefGoogle Scholar
  263. von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342Google Scholar
  264. Waegemann K, Popov-Celeketic D, Neupert W, Azem A, Mokranjac D (2015) Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria. J Mol Biol 427:1075–1084. doi:10.1016/j.jmb.2014.07.015 CrossRefGoogle Scholar
  265. Walther DM, Rapaport D (2009) Biogenesis of mitochondrial outer membrane proteins. Biochim Biophys Acta, Mol Cell Res 1793:42–51. doi:10.1016/j.bbamcr.2008.04.013 CrossRefGoogle Scholar
  266. Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC, Koehler CM, Teitell MA (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467. doi:10.1016/j.cell.2010.06.035 CrossRefGoogle Scholar
  267. Wang G, Shimada E, Koehler CM, Teitell MA (2012) PNPASE and RNA trafficking into mitochondria. Biochimica Et Biophysica Acta-Gene Regulat Mech 1819:998–1007. doi:10.1016/j.bbagrm.2011.10.001 CrossRefGoogle Scholar
  268. Weber-Lotfi F, Ibrahim N, Boesch P, Cosset A, Konstantinov Y, Lightowlers RN, Dietrich A (2009) Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. Biochim Biophys Acta -Bioenerget 1787:320–327. doi:10.1016/j.bbabio.2008.11.001 CrossRefGoogle Scholar
  269. Weber-Lotfi F, Koulintchenko MV, Ibrahim N, Hammann P, Mileshina DV, Konstantinov YM, Dietrich A (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways. Biochim Biophys Acta 1853:3165–3181. doi:10.1016/j.bbamcr.2015.09.011 CrossRefGoogle Scholar
  270. Wenz LS, Opalinski L, Schuler MH, Ellenrieder L, Ieva R, Bottinger L, Qiu J, van der Laan M, Wiedemann N, Guiard B, Pfanner N, Becker T (2014) The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. Embo Rep 15:678–685. doi:10.1002/embr.201338144 Google Scholar
  271. Wenz LS, Opalinski L, Wiedemann N, Becker T (2015) Cooperation of protein machineries in mitochondrial protein sorting. Biochim Biophys Acta 1853:1119–1129. doi:10.1016/j.bbamcr.2015.01.012 CrossRefGoogle Scholar
  272. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884. doi:10.1038/nrm3013 CrossRefGoogle Scholar
  273. Wideman JG, Go NE, Klein A, Redmond E, Lackey SW, Tao T, Kalbacher H, Rapaport D, Neupert W, Nargang FE (2010) Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol Biol Cell 21:1725–1736. doi:10.1091/mbc.E09-10-0844 CrossRefGoogle Scholar
  274. Wideman JG, Lackey SW, Srayko MA, Norton KA, Nargang FE (2013) Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to beta-barrel protein assembly and maintenance of mitochondrial morphology. Plos One 8:e71837. doi:10.1371/journal.pone.0071837 CrossRefGoogle Scholar
  275. Wiedemann N, Pfanner N, Ryan MT (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. Embo J 20:951–960. doi:10.1093/emboj/20.5.951 CrossRefGoogle Scholar
  276. Wiedemann N, van der Laan M, Hutu DP, Rehling P, Pfanner N (2007) Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J Cell Biol 179:1115–1122. doi:10.1083/jcb.200709087 CrossRefGoogle Scholar
  277. Wrobel L, Trojanowska A, Sztolsztener ME, Chacinska A (2013) Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol Biol Cell 24:543–554. doi:10.1091/mbc.E12-09-0649 CrossRefGoogle Scholar
  278. Xu X, Decker W, Sampson MJ, Craigen WJ, Colombini M (1999) Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability. J Membrane Biol 170:89–102. doi:10.1007/s002329900540 CrossRefGoogle Scholar
  279. Yamano K, Ishikawa D, Esaki M, Endo T (2005) The phosphate carrier has an ability to be sorted to either the TIM22 pathway or the TIM23 pathway for its import into yeast mitochondria. J Biol Chem 280:10011–10017. doi:10.1074/jbc.M413264200 CrossRefGoogle Scholar
  280. Yamano K, Tanaka-Yamano S, Endo T (2010a) Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. Embo Rep 11:187–193. doi:10.1038/embor.2009.283 CrossRefGoogle Scholar
  281. Yamano K, Tanaka-Yamano S, Endo T (2010b) Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J Biol Chem 285:41222–41231. doi:10.1074/jbc.M110.163238 CrossRefGoogle Scholar
  282. Yehezkel G, Hadad N, Zaid H, Sivan S, Shoshan-Barmatz V (2006) Nucleotide-binding sites in the voltage-dependent anion channel - characterization and localization. J Biol Chem 281:5938–5946. doi:10.1074/jbc.M510104200 CrossRefGoogle Scholar
  283. Yehezkel G, Abu-Hamad S, Shoshan-Barmatz V (2007) An N-terminal nucleotide-binding site in VDAC1: involvement in regulating mitochondrial function. J Cell Physiol 212:551–561. doi:10.1002/jcp.21048 CrossRefGoogle Scholar
  284. Zachariae U, Schneider R, Briones R, Gattin Z, Demers JP, Giller K, Maier E, Zweckstetter M, Griesinger C, Becker S, Benz R, de Groot BL, Lange A (2012) beta-barrel mobility underlies closure of the voltage-dependent anion channel. Structure 20:1540–1549. doi:10.1016/j.str.2012.06.015 CrossRefGoogle Scholar
  285. Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V (2005) Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 386:73–83. doi:10.1042/Bj200041356 CrossRefGoogle Scholar
  286. Zerbes RM, Bohnert M, Stroud DA, von der Malsburg K, Kram A, Oeljeklaus S, Warscheid B, Becker T, Wiedemann N, Veenhuis M, van der Klei IJ, Pfanner N, van der Laan M (2012) Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J Mol Biol 422:183–191. doi:10.1016/j.jmb.2012.05.004 CrossRefGoogle Scholar
  287. Zhuang J, Wang PY, Huang X, Chen X, Kang JG, Hwang PM (2013) Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc Natl Acad Sci U S A 110:17356–17361. doi:10.1073/pnas.1310908110 CrossRefGoogle Scholar
  288. Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:5–19. doi:10.1016/j.bbamcr.2008.06.013 CrossRefGoogle Scholar
  289. Zizi M, Forte M, Blachlydyson E, Colombini M (1994) Nadh regulates the gating of Vdac, the mitochondrial outer-membrane channel. J Biol Chem 269:1614–1616Google Scholar
  290. Zorov DB, Kinnally KW, Perini S, Tedeschi H (1992a) Multiple conductance levels in rat-heart inner mitochondrial-membranes studied by patch clamping. Biochimica Et Biophysica Acta 1105:263–270. doi:10.1016/0005-2736(92)90203-x CrossRefGoogle Scholar
  291. Zorov DB, Kinnally KW, Tedeschi H (1992b) Voltage activation of heart inner mitochondrial membrane channels. J Bioenerg Biomembr 24:119–124. doi:10.1007/bf00769538 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • María Luisa Campo
    • 1
  • Pablo M. Peixoto
    • 2
  • Sonia Martínez-Caballero
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of Veterinary SciencesUniversity of ExtremaduraCáceresSpain
  2. 2.Graduate Center and Baruch College of the City University of New YorkNew YorkUSA

Personalised recommendations