Journal of Bioenergetics and Biomembranes

, Volume 47, Issue 6, pp 477–491 | Cite as

The Saccharomyces cerevisiae mitochondrial unselective channel behaves as a physiological uncoupling system regulated by Ca2+, Mg2+, phosphate and ATP

  • Alfredo Cabrera-Orefice
  • Rodrigo Ibarra-García-Padilla
  • Rocío Maldonado-Guzmán
  • Sergio Guerrero-Castillo
  • Luis A. Luévano-Martínez
  • Victoriano Pérez-Vázquez
  • Manuel Gutiérrez-Aguilar
  • Salvador Uribe-Carvajal


It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel ( Sc MUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg2+, Ca2+ or phosphate (Pi) close Sc MUC, while ATP or a high rate of oxygen consumption open it. We assessed Sc MUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca2+] and/or [Mg2+] were needed to close Sc MUC or increase ATP synthesis. The Ca2+-mediated closure of Sc MUC was prevented by high [ATP] while the Mg2+ or Pi effect was not. When Ca2+ and Mg2+ were alternatively added or chelated, Sc MUC opened and closed reversibly. Different effects of Ca2+ vs Mg2+ effects were probably due to mitochondrial Mg2+ uptake. Our results suggest that Sc MUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of Sc MUC leads to physiological uncoupling and a consequent decrease in ROS production.


Permeability transition Mitochondrial unselective channel Yeast mitochondria Synergism Physiological uncoupling 



permeability transition


Saccharomyces cerevisiae Mitochondrial Unselective Channel


Permeability Transition Pore


Adenine Nucleotide Carrier


Voltage Dependent Anion Channel


Phosphate Carrier


carbonyl cyanide 3-chlorophenylhydrazone


Transmembrane Potential


Reactive Oxygen Species


Ethylene-diamine-tetra-acetic acid


ethylene-glycol-tetra-acetic acid



The authors thank Natalia Chiquete-Félix and Ramón Méndez for technical assistance. Partially funded by CONACYT grant 239487 and PAPIIT-UNAM IN204015. ACO is a CONACYT fellow enrolled in the Biochemistry PhD program at UNAM. LALM is supported by a postdoctoral fellowship from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process number 2013/04919-9.


  1. Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197CrossRefGoogle Scholar
  2. Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584(12):2504–2509CrossRefGoogle Scholar
  3. Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104(2):181–188CrossRefGoogle Scholar
  4. Beeler T, Bruce K, Dunn T (1997) Regulation of cellular Mg2+ by Saccharomyces cerevisiae. Biochim Biophys Acta 1323(2):310–318CrossRefGoogle Scholar
  5. Bernardi P, Veronese P, Petronilli V (1993) Modulation of the mitochondrial cyclosporin a-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem 268(2):1005–1010Google Scholar
  6. Bradshaw PC, Pfeiffer DR (2006) Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. BMC Biochem 7:1–4CrossRefGoogle Scholar
  7. Bradshaw PC, Pfeiffer DR (2013) Characterization of the respiration-induced yeast mitochondrial permeability transition pore. Yeast 30(12):471–483CrossRefGoogle Scholar
  8. Cabrera-Orefice A, Guerrero-Castillo S, Luevano-Martinez LA, Pena A, Uribe-Carvajal S (2010) Mitochondria from the salt-tolerant yeast debaryomyces hansenii (halophilic organelles?). J Bioenerg Biomembr 42(1):11–19CrossRefGoogle Scholar
  9. Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797(6–7):595–606CrossRefGoogle Scholar
  10. Carafoli E, Balcavage WX, Lehninger AL, Mattoon JR (1970) Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta 205(1):18–26CrossRefGoogle Scholar
  11. Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M, Lippe G, Zoratti M, Szabo I, Bernardi P (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J. Biol. Chem 289(23):15980–15985CrossRefGoogle Scholar
  12. Castrejon V, Parra C, Moreno R, Pena A, Uribe S (1997) Potassium collapses the deltaP in yeast mitochondria while the rate of ATP synthesis is inhibited only partially: modulation by phosphate. Arch Biochem Biophys 346(1):37–44CrossRefGoogle Scholar
  13. Cavalheiro RA, Fortes F, Borecky J, Faustinoni VC, Schreiber AZ, Vercesi AE (2004) Respiration, oxidative phosphorylation, and uncoupling protein in Candida albicans. Braz J Med Biol Res 37(10):1455–1461CrossRefGoogle Scholar
  14. Correa F, Soto V, Zazueta C (2007) Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart. Int J Biochem Cell Biol 39(4):787–798CrossRefGoogle Scholar
  15. Cortes P, Castrejon V, Sampedro JG, Uribe S (2000) Interactions of arsenate, sulfate and phosphate with yeast mitochondria. Biochim Biophys Acta 1456(2–3):67–76CrossRefGoogle Scholar
  16. Cunningham KW, Fink GR (1994) Ca2+ transport in Saccharomyces cerevisiae. J Exp Biol 196:157–166Google Scholar
  17. de la Fuente S, Montenegro P, Fonteriz RI, Moreno A, Lobaton CD, Montero M, Alvarez J (2010) The dynamics of mitochondrial Ca(2+) fluxes. Biochim Biophys Acta 1797(10):1727–1735CrossRefGoogle Scholar
  18. Dejean L, Beauvoit B, Bunoust O, Fleury C, Guerin B, Rigoulet M (2001) The calorimetric-respirometric ratio is an on-line marker of enthalpy efficiency of yeast cells growing on a non-fermentable carbon source. Biochim Biophys Acta 1503(3):329–340CrossRefGoogle Scholar
  19. De-kloet SR, Van Wermeskerken RKA, Konigsberger VV (1961) Studies of protein synthesis by protoplasts of Saccharomyces cerevisiae. Biochim Biophys Acta 47:138–146CrossRefGoogle Scholar
  20. Fonteriz RI, de la Fuente S, Moreno A, Lobaton CD, Montero M, Alvarez J (2010) Monitoring mitochondrial [Ca(2+)] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium 48(1):61–69CrossRefGoogle Scholar
  21. Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358(Pt 1):147–155CrossRefGoogle Scholar
  22. Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD (2015) Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290(1):209–227CrossRefGoogle Scholar
  23. Gornal AG, Bardavill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177:751–760Google Scholar
  24. Guerin B, Bunoust O, Rouqueys V, Rigoulet M (1994) ATP-induced unspecific channel in yeast mitochondria. J. Biol. Chem. 269(41):25406–25410Google Scholar
  25. Guerrero-Castillo S, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S (2009) In yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim Biophys Acta 1787(2):75–85CrossRefGoogle Scholar
  26. Guerrero-Castillo S, Araiza-Olivera D, Cabrera-Orefice A, Espinasa-Jaramillo J, Gutierrez-Aguilar M, Luevano-Martinez LA, Zepeda-Bastida A, Uribe-Carvajal S (2011) Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species. J Bioenerg Biomembr 43(3):323–331CrossRefGoogle Scholar
  27. Guerrero-Castillo S, Cabrera-Orefice A, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S (2012) During the stationary growth phase, yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. Biochim Biophys Acta 1817(2):353–362CrossRefGoogle Scholar
  28. Gutierrez-Aguilar M, Perez-Vazquez V, Bunoust O, Manon S, Rigoulet M, Uribe S (2007) In yeast, Ca2+ and octylguanidine interact with porin (VDAC) preventing the mitochondrial permeability transition. Biochim Biophys Acta 1767(10):1245–1251CrossRefGoogle Scholar
  29. Gutierrez-Aguilar M, Perez-Martinez X, Chavez E, Uribe-Carvajal S (2010) In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel. Arch Biochem Biophys 494(2):184–191CrossRefGoogle Scholar
  30. Gutierrez-Aguilar M, Uribe-Carvajal S (2015) The mitochondrial unselective channel in Saccharomyces cerevisiae. Mitochondrion 22:85--90Google Scholar
  31. Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366(1–2):33–50CrossRefGoogle Scholar
  32. Iida H, Sakaguchi S, Yagawa Y, Anraku Y (1990a) Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J Biol Chem 265(34):21216–21222Google Scholar
  33. Iida H, Yagawa Y, Anraku Y (1990b) Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J. Biol. Chem. 265(22):13391–13399Google Scholar
  34. Janssen JW, Helbing AR (1991) Arsenazo III: an improvement of the routine calcium determination in serum. Eur J Clin Chem Clin Biochem 29(3):197–201Google Scholar
  35. Jung DW, Brierley GP (1986) Matrix magnesium and the permeability of heart mitochondria to potassium ion. J. Biol. Chem. 261(14):6408–6415Google Scholar
  36. Jung DW, Bradshaw PC, Pfeiffer DR (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J. Biol. Chem. 272(34):21104–21112CrossRefGoogle Scholar
  37. Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M (2003) Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J 22(6):1235–1244CrossRefGoogle Scholar
  38. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18CrossRefGoogle Scholar
  39. Kovacs-Bogdan E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A, Huber RJ, Myre MA, Blower MD, Mootha VK (2014) Reconstitution of the mitochondrial calcium uniporter in yeast. Proc Natl Acad Sci U S A 111(24):8985–8990CrossRefGoogle Scholar
  40. Kovaleva MV, Sukhanova EI, Trendeleva TA, Zyl'kova MV, Ural'skaya LA, Popova KM, Saris NE, Zvyagilskaya RA (2009) Induction of a non-specific permeability transition in mitochondria from yarrowia lipolytica and dipodascus (endomyces) magnusii yeasts. J Bioenerg Biomembr 41(3):239–249CrossRefGoogle Scholar
  41. Lemasters JJ (2007) Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. J Gastroenterol Hepatol 22(Suppl 1):S31–S37CrossRefGoogle Scholar
  42. Luevano-Martinez LA, Moyano E, de Lacoba MG, Rial E, Uribe-Carvajal S (2010) Identification of the mitochondrial carrier that provides yarrowia lipolytica with a fatty acid-induced and nucleotide-sensitive uncoupling protein-like activity. Biochim Biophys Acta 1797(1):81–88CrossRefGoogle Scholar
  43. Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43(2 Suppl 1):S31–S44CrossRefGoogle Scholar
  44. Manon S (1999) Dependence of yeast mitochondrial unselective channel activity on the respiratory chain. Biochim Biophys Acta 1410(1):85–90CrossRefGoogle Scholar
  45. Manon S, Guerin M (1997) The ATP-induced K(+)-transport pathway of yeast mitochondria may function as an uncoupling pathway. Biochim Biophys Acta 1318(3):317–321CrossRefGoogle Scholar
  46. Manon S, Guerin M (1998) Investigation of the yeast mitochondrial unselective channel in intact and permeabilized spheroplasts. Biochem Mol Biol Int 44(3):565–575Google Scholar
  47. Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B (1998) Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 30(5):419–429CrossRefGoogle Scholar
  48. Moore AL, Bonner WD (1982) Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol 70(5):1271–1276CrossRefGoogle Scholar
  49. Nakajima-Shimada J, Sakaguchi S, Tsuji FI, Anraku Y, Iida H (2000) Ca2+ signal is generated only once in the mating pheromone response pathway in Saccharomyces cerevisiae. Cell Struct Funct 25(2):125–131CrossRefGoogle Scholar
  50. Pavon N, Aranda A, Garcia N, Hernandez-Esquivel L, Chavez E (2009) In hyperthyroid rats octylguanidine protects the heart from reperfusion damage. Endocrine 35(2):158–165CrossRefGoogle Scholar
  51. Perez-Vazquez V, Saavedra-Molina A, Uribe S (2003) In Saccharomyces cerevisiae, cations control the fate of the energy derived from oxidative metabolism through the opening and closing of the yeast mitochondrial unselective channel. J Bioenerg Biomembr 35(3):231–241CrossRefGoogle Scholar
  52. Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76(2):725–734CrossRefGoogle Scholar
  53. Popov VN, Simonian RA, Skulachev VP, Starkov AA (1997) Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett 415(1):87–90CrossRefGoogle Scholar
  54. Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168(2):257–269CrossRefGoogle Scholar
  55. Prieto S, Bouillaud F, Ricquier D, Rial E (1992) Activation by ATP of a proton-conducting pathway in yeast mitochondria. Eur J Biochem 208(2):487–491CrossRefGoogle Scholar
  56. Prieto S, Bouillaud F, Rial E (1995) The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae. Biochem J 307(Pt 3):657–661CrossRefGoogle Scholar
  57. Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312CrossRefGoogle Scholar
  58. Raffaello A, De Stefani D, Rizzuto R (2012) The mitochondrial Ca(2+) uniporter. Cell Calcium 52(1):16–21CrossRefGoogle Scholar
  59. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408CrossRefGoogle Scholar
  60. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262(5134):744–747CrossRefGoogle Scholar
  61. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787(11):1342–1351CrossRefGoogle Scholar
  62. Roucou X, Manon S, Guerin M (1995) ATP opens an electrophoretic potassium transport pathway in respiring yeast mitochondria. FEBS Lett 364(2):161–164CrossRefGoogle Scholar
  63. Roucou X, Manon S, Guerin M (1997) Conditions allowing different states of ATP- and GDP-induced permeability in mitochondria from different strains of Saccharomyces cerevisiae. Biochim Biophys Acta 1324(1):120–132CrossRefGoogle Scholar
  64. Scarpa A, Brinley FJ, Tiffert T, Dubyak G (1978) METALLOCHROMIC INDICATORS OF IONIZED CALCIUM. Ann N Y Acad Sci 307:86–112CrossRefGoogle Scholar
  65. Schindl R, Weghuber J, Romanin C, Schweyen RJ (2007) Mrs2p forms a high conductance Mg2+ selective channel in mitochondria. Biophys J 93(11):3872–3883CrossRefGoogle Scholar
  66. Shoshan-Barmatz V, Ashley RH (1998) The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int Rev Cytol 183:185–270CrossRefGoogle Scholar
  67. Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 397(1):7–10CrossRefGoogle Scholar
  68. Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 a resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747CrossRefGoogle Scholar
  69. Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161(3):1195–1200Google Scholar
  70. Uribe S, Rangel P, Pardo JP (1992) Interactions of calcium with yeast mitochondria. Cell Calcium 13(4):211–217CrossRefGoogle Scholar
  71. Uribe S, Rangel P, Pardo JP, Pereira-Da-Silva L (1993) Interactions of calcium and magnesium with the mitochondrial inorganic pyrophosphatase from Saccharomyces cerevisiae. Eur J Biochem 217(2):657–660CrossRefGoogle Scholar
  72. Uribe-Carvajal S, Luevano-Martinez LA, Guerrero-Castillo S, Cabrera-Orefice A, Corona-de-la-Pena NA, Gutierrez-Aguilar M (2011) Mitochondrial unselective channels throughout the eukaryotic domain. Mitochondrion 11(3):382–390CrossRefGoogle Scholar
  73. van der Laan M, Hutu DP, Rehling P (2010) On the mechanism of preprotein import by the mitochondrial presequence translocase. Biochim Biophys Acta 1803(6):732–739CrossRefGoogle Scholar
  74. Wallace PG, Pedler SM, Wallace JC, Berry MN (1994) A method for the determination of the cellular phosphorylation potential and glycolytic intermediates in yeast. Anal Biochem 222(2):404–408CrossRefGoogle Scholar
  75. Yamada A, Yamamoto T, Yoshimura Y, Gouda S, Kawashima S, Yamazaki N, Yamashita K, Kataoka M, Nagata T, Terada H, Pfeiffer DR, Shinohara Y (2009) Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim Biophys Acta 1787(12):1486–1491CrossRefGoogle Scholar
  76. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alfredo Cabrera-Orefice
    • 1
  • Rodrigo Ibarra-García-Padilla
    • 1
  • Rocío Maldonado-Guzmán
    • 1
  • Sergio Guerrero-Castillo
    • 2
  • Luis A. Luévano-Martínez
    • 3
  • Victoriano Pérez-Vázquez
    • 4
  • Manuel Gutiérrez-Aguilar
    • 5
  • Salvador Uribe-Carvajal
    • 1
    • 6
  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Nijmegen Center for Mitochondrial DisordersNijmegenThe Netherlands
  3. 3.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  4. 4.Departamento de Ciencias MédicasUniversidad de GuanajuatoGuanajuatoMexico
  5. 5.Center for Human NutritionWashington University School of MedicineSt. LouisUSA
  6. 6.Salvador Uribe-Carvajal, Department of Molecular GeneticsInstituto de Fisiología CelularMexico CityMexico

Personalised recommendations