Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 47, Issue 5, pp 441–449 | Cite as

Gold nanoparticle-mediated (GNOME) laser perforation: a new method for a high-throughput analysis of gap junction intercellular coupling

  • Daniela Begandt
  • Almke Bader
  • Georgios C. Antonopoulos
  • Markus Schomaker
  • Stefan Kalies
  • Heiko Meyer
  • Tammo Ripken
  • Anaclet NgezahayoEmail author
Article

Abstract

The present report evaluates the advantages of using the gold nanoparticle-mediated laser perforation (GNOME LP) technique as a computer-controlled cell optoperforation to introduce Lucifer yellow (LY) into cells in order to analyze the gap junction coupling in cell monolayers. To permeabilize GM-7373 endothelial cells grown in a 24 multiwell plate with GNOME LP, a laser beam of 88 μm in diameter was applied in the presence of gold nanoparticles and LY. After 10 min to allow dye uptake and diffusion through gap junctions, we observed a LY-positive cell band of 179 ± 8 μm width. The presence of the gap junction channel blocker carbenoxolone during the optoperforation reduced the LY-positive band to 95 ± 6 μm. Additionally, a forskolin-related enhancement of gap junction coupling, recently found using the scrape loading technique, was also observed using GNOME LP. Further, an automatic cell imaging and a subsequent semi-automatic quantification of the images using a java-based ImageJ-plugin were performed in a high-throughput sequence. Moreover, the GNOME LP was used on cells such as RBE4 rat brain endothelial cells, which cannot be mechanically scraped as well as on three-dimensionally cultivated cells, opening the possibility to implement the GNOME LP technique for analysis of gap junction coupling in tissues. We conclude that the GNOME LP technique allows a high-throughput automated analysis of gap junction coupling in cells. Moreover this non-invasive technique could be used on monolayers that do not support mechanical scraping as well as on cells in tissue allowing an in vivo/ex vivo analysis of gap junction coupling.

Keywords

Scrape loading Dye transfer Gap junction Gold nanoparticle-mediated laser perforation GNOME In vivo Vascular Endothelial cells 

Notes

Acknowledgments

The authors thank Dr. Sabrina Schlie-Wolter for the kind gift of the RBE4 cells. The authors also thank Kristina Schmitt and Anne Klett for their assistance with the experiments.

References

  1. Abbaci M, Barberi-Heyob M, Blondel W, Guillemin F, Didelon J (2008) Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. Biotechniques 45(33–52):56–62. doi: 10.2144/000112810 Google Scholar
  2. Baumgart J, Humbert L, Boulais É, Lachaine R, Lebrun J, Meunier M (2012) Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 33:2345–2350. doi: 10.1016/j.biomaterials.2011.11.062 CrossRefGoogle Scholar
  3. Begandt D, Bader A, Dreyer L, Eisert N, Reeck T, Ngezahayo A (2013) Biphasic increase of gap junction coupling induced by dipyridamole in the rat aortic a-10 vascular smooth muscle cell line. J Cell Commun Signal 7:151–160. doi: 10.1007/s12079-013-0196-4 CrossRefGoogle Scholar
  4. Begandt D, Bintig W, Oberheide K, Schlie S, Ngezahayo A (2010) Dipyridamole increases gap junction coupling in bovine GM-7373 aortic endothelial cells by a cAMP-protein kinase a dependent pathway. J Bioenerg Biomembr 42:79–84. doi: 10.1007/s10863-009-9262-2 CrossRefGoogle Scholar
  5. Carbone SE, Wattchow DA, Spencer NJ, Hibberd TJ, Brookes SJ (2014) Damage from dissection is associated with reduced neuro-musclar transmission and gap junction coupling between circular muscle cells of guinea pig ileum, in vitro. Front Physiol 5:319. doi: 10.3389/fphys.2014.00319 CrossRefGoogle Scholar
  6. el-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168(2):422–430CrossRefGoogle Scholar
  7. Figueroa XF, Duling BR (2009) Gap junctions in the control of vascular function. Antioxid. Redox Signal. 11:251–266. doi: 10.1089/ars.2008.2117 CrossRefGoogle Scholar
  8. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1:a002576. doi: 10.1101/cshperspect.a002576 CrossRefGoogle Scholar
  9. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143. doi: 10.1016/j.pbiomolbio.2007.03.011 CrossRefGoogle Scholar
  10. Heinemann D, Schomaker M, Kalies S, Schieck M, Carlson R, Murua Escobar H, Ripken T, Meyer H, Heisterkamp A (2013) Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down. PLoS One 8:e58604. doi: 10.1371/journal.pone.0058604 CrossRefGoogle Scholar
  11. Kalies S, Birr T, Heinemann D, Schomaker M, Ripken T, Heisterkamp A, Meyer H (2014) Enhancement of extracellular molecule uptake in plasmonic laser perforation. J Biophotonics 7:474–482. doi: 10.1002/jbio.201200200 CrossRefGoogle Scholar
  12. Kalies S, Heinemann D, Schomaker M, Escobar HM, Heisterkamp A, Ripken T, Meyer H (2013) Plasmonic laser treatment for morpholino oligomer delivery in antisense applications. J Biophotonics. doi: 10.1002/jbio.201300056 Google Scholar
  13. Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y, Huang W, Yuan X, Wang T, Zhang Q, Harris AL, Tao L, Xiang AP (2013) Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 22:2221–2233. doi: 10.1093/hmg/ddt074 CrossRefGoogle Scholar
  14. Kelsell DP, Dunlop J, Hodgins MB (2001) Human diseases: clues to cracking the connexin code? Trends Cell Biol 11(1):2–6CrossRefGoogle Scholar
  15. Lee C, Chen I, Lee C, Chi C, Tsai M, Tsai J, Lin H (2010) Inhibition of gap junctional intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways. J Occup Med Toxicol 5:17. doi: 10.1186/1745-6673-5-17 CrossRefGoogle Scholar
  16. Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou N (2012) Gap junctions. Compr Physiol 2:1981–2035. doi: 10.1002/cphy.c110051 Google Scholar
  17. Osswald M, Winkler F (2013) Insights into cell-to-cell and cell-to-blood-vessel communications in the brain: in vivo multiphoton microscopy. Cell Tissue Res 352:149–159. doi: 10.1007/s00441-013-1580-3 CrossRefGoogle Scholar
  18. Schomaker M, Fehlauer H, Bintig W, Ngezahayo A, Nolte, I, Murua-Escobar, H, Lubatschowski H, Heisterkamp A (2010) Fs- laser cell perforation using gold nanoparticles of different shapes. Proceedings of SPIE 7589:75890C-75890C-5Google Scholar
  19. Schomaker M, Killian D, Willenbrock S, Heinemann D, Kalies S, Ngezahayo A, Nolte I, Ripken T, Junghanss C, Meyer H, Escobar HM, Heisterkamp A (2014) Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses. J Biophotonics 9999. doi: 10.1002/jbio.201400065
  20. Stevenson D, Gunn-Moore F, Campbell P, Dholakia K (2010) Transfection by optical injection. In: Tuchin V (ed) Handbook of photonics for biomedical science. CRC Press, Taylor and Francis Group, London, pp. 87–118CrossRefGoogle Scholar
  21. Werkmeister E, Kerdjoudj H, Marchal L, Stoltz JF, Dumas D (2007) Multiphoton microscopy for blood vessel imaging: new non-invasive tools (Spectral, SHG, FLIM). Clin Hemorheol Microcirc 37(1–2):77–88Google Scholar
  22. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737. doi: 10.1515/BC.2002.076 CrossRefGoogle Scholar
  23. Xia Y, Gong K, Xu M, Zhang Y, Guo J, Song Y, Zhang P (2009) Regulation of gap-junction protein connexin 43 by beta-adrenergic receptor stimulation in rat cardiomyocytes. Acta Pharmacol Sin 30:928–934. doi: 10.1038/aps.2009.92 CrossRefGoogle Scholar
  24. Zoidl G, Dermietzel R (2010) Gap junctions in inherited human disease. Pflügers Arch. 460:451–466. doi: 10.1007/s00424-010-0789-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Daniela Begandt
    • 1
  • Almke Bader
    • 1
  • Georgios C. Antonopoulos
    • 2
  • Markus Schomaker
    • 2
  • Stefan Kalies
    • 2
  • Heiko Meyer
    • 2
    • 3
  • Tammo Ripken
    • 2
  • Anaclet Ngezahayo
    • 1
    • 4
    Email author
  1. 1.Institute of BiophysicsLeibniz University HannoverHannoverGermany
  2. 2.Biomedical Optics DepartmentLaser Zentrum Hannover e. V.HannoverGermany
  3. 3.Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
  4. 4.Center for Systems Neuroscience HannoverUniversity of Veterinary Medicine Hannover FoundationHannoverGermany

Personalised recommendations