Journal of Bioenergetics and Biomembranes

, Volume 48, Issue 2, pp 137–151 | Cite as

Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function

  • Laura A. Martin
  • Barry E. Kennedy
  • Barbara Karten
Mini-review

Abstract

Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

Keywords

Mitochondrial cholesterol START proteins Stard1 Stard3 MLN64 MAM Cholesterol trafficking Mitochondrial function 

References

  1. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283:13482–13490CrossRefGoogle Scholar
  2. Alpy F, Tomasetto C (2005) Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J Cell Sci 118:2791–2801CrossRefGoogle Scholar
  3. Alpy F, Tomasetto C (2006) MLN64 and MENTHO, two mediators of endosomal cholesterol transport. Biochem Soc Trans 34:343–345CrossRefGoogle Scholar
  4. Alpy F, Tomasetto C (2014) START ships lipids across interorganelle space. Biochimie 96:85–95CrossRefGoogle Scholar
  5. Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC (2001) The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem 276:4261–4269CrossRefGoogle Scholar
  6. Alpy F, Wendling C, Rio MC, Tomasetto C (2002) MENTHO, a MLN64 homologue devoid of the START domain. J Biol Chem 277:50780–50787CrossRefGoogle Scholar
  7. Alpy F, Latchumanan VK, Kedinger V, Janoshazi A, Thiele C, Wendling C, Rio MC, Tomasetto C (2005) Functional characterization of the MENTAL domain. J Biol Chem 280:17945–17952CrossRefGoogle Scholar
  8. Alpy F, Legueux F, Bianchetti L, Tomasetto C (2009) START domain-containing proteins: a review of their role in lipid transport and exchange. Med Sci (Paris) 25:181–191CrossRefGoogle Scholar
  9. Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C (2013) STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci 126:5500–5512CrossRefGoogle Scholar
  10. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Watari H, Stocco DM, Strauss JF 3rd (1997) Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem 272:32656–32662CrossRefGoogle Scholar
  11. Arakane F, Kallen CB, Watari H, Foster JA, Sepuri NB, Pain D, Stayrook SE, Lewis M, Gerton GL, Strauss JF 3rd (1998) The mechanism of action of steroidogenic acute regulatory protein (StAR). StAR acts on the outside of mitochondria to stimulate steroidogenesis. J Biol Chem 273:16339–16345CrossRefGoogle Scholar
  12. Arbel N, Ben-Hail D, Shoshan-Barmatz V (2012) Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 287:23152–23161CrossRefGoogle Scholar
  13. Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, Madra M, Ikenouchi J, Umeda M, Bird TD, Sturley SL, Schon EA (2012) Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J 31:4106–4123CrossRefGoogle Scholar
  14. Baggetto LG, Clottes E, Vial C (1992) Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Cancer Res 52:4935–4941Google Scholar
  15. Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22:3460–3476CrossRefGoogle Scholar
  16. Barbero-Camps E, Fernandez A, Baulies A, Martinez L, Fernandez-Checa JC, Colell A (2014) Endoplasmic reticulum stress mediates amyloid beta neurotoxicity via mitochondrial cholesterol trafficking. Am J Pathol 184:2066–2081CrossRefGoogle Scholar
  17. Batra S, Alenfall J (1994) Characterization of peripheral benzodiazepine receptors in rat prostatic adenocarcinoma. Prostate 24:269–278CrossRefGoogle Scholar
  18. Bay DC, O’Neil JD, Court DA (2008) The influence of sterols on the conformation of recombinant mitochondrial porin in detergent. Biochem Cell Biol 86:539–545CrossRefGoogle Scholar
  19. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105:15370–15375CrossRefGoogle Scholar
  20. Bender T, Martinou JC (2013) Where killers meet–permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 5:a011106CrossRefGoogle Scholar
  21. Boland ML, Chourasia AH, Macleod KF (2013) Mitochondrial dysfunction in cancer. Front Oncol 3:292CrossRefGoogle Scholar
  22. Borthwick F, Allen AM, Taylor JM, Graham A (2010) Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci (Lond) 119:265–272CrossRefGoogle Scholar
  23. Bosch M, Mari M, Herms A, Fernandez A, Fajardo A, Kassan A, Giralt A, Colell A, Balgoma D, Barbero E, Gonzalez-Moreno E, Matias N, Tebar F, Balsinde J, Camps M, Enrich C, Gross SP, Garcia-Ruiz C, Perez-Navarro E, Fernandez-Checa JC, Pol A (2011a) Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 21:681–686CrossRefGoogle Scholar
  24. Bosch M, Mari M, Gross SP, Fernandez-Checa JC, Pol A (2011b) Mitochondrial cholesterol: a connection between caveolin, metabolism, and disease. Traffic 12:1483–1489CrossRefGoogle Scholar
  25. Bose HS, Whittal RM, Huang MC, Baldwin MA, Miller WL (2000a) N-218 MLN64, a protein with StAR-like steroidogenic activity, is folded and cleaved similarly to StAR. Biochem 39:11722–11731CrossRefGoogle Scholar
  26. Bose HS, Baldwin MA, Miller WL (2000b) Evidence that StAR and MLN64 act on the outer mitochondrial membrane as molten globules. Endocr Res 26:629–637CrossRefGoogle Scholar
  27. Bose HS, Lingappa VR, Miller WL (2002) The steroidogenic acute regulatory protein, StAR, works only at the outer mitochondrial membrane. Endocr Res 28:295–308CrossRefGoogle Scholar
  28. Bose M, Whittal RM, Miller WL, Bose HS (2008a) Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein. J Biol Chem 283:8837–8845CrossRefGoogle Scholar
  29. Bose HS, Whittal RM, Ran Y, Bose M, Baker BY, Miller WL (2008b) StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochem 47:2277–2288CrossRefGoogle Scholar
  30. Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, Rodriguez AE, Verdejo HE, Ferreira J, Iglewski M, Chiong M, Simmen T, Zorzano A, Hill JA, Rothermel BA, Szabadkai G, Lavandero S (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124:2143–2152CrossRefGoogle Scholar
  31. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C (2009) Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 50:789–796CrossRefGoogle Scholar
  32. Cai W, Ye L, Sun J, Mansel RE, Jiang WG (2010) Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase. Int J Mol Med 25:573–580CrossRefGoogle Scholar
  33. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95CrossRefGoogle Scholar
  34. Calderon-Dominguez M, Gil G, Medina MA, Pandak WM, Rodriguez-Agudo D (2014) The StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins: new players in cholesterol metabolism. Int J Biochem Cell Biol 49:64–68CrossRefGoogle Scholar
  35. Calore F, Genisset C, Casellato A, Rossato M, Codolo G, Esposti MD, Scorrano L, de Bernard M (2010) Endosome-mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death Differ 17:1707–1716CrossRefGoogle Scholar
  36. Campbell AM, Chan SH (2007) The voltage dependent anion channel affects mitochondrial cholesterol distribution and function. Arch Biochem Biophys 466:203–210CrossRefGoogle Scholar
  37. Campbell AM, Chan SH (2008) Mitochondrial membrane cholesterol, the voltage dependent anion channel (VDAC), and the Warburg effect. J Bioenerg Biomembr 40:193–197CrossRefGoogle Scholar
  38. Carmel I, Fares FA, Leschiner S, Scherubl H, Weisinger G, Gavish M (1999) Peripheral-type benzodiazepine receptors in the regulation of proliferation of MCF-7 human breast carcinoma cell line. Biochem Pharmacol 58:273–278CrossRefGoogle Scholar
  39. Charman M, Kennedy BE, Osborne N, Karten B (2010) MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res 51:1023–1034CrossRefGoogle Scholar
  40. Choudhary OP, Paz A, Adelman JL, Colletier JP, Abramson J, Grabe M (2014) Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. Nat Struct Mol Biol 21:626–632CrossRefGoogle Scholar
  41. Clark BJ (2012) The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol 212:257–275CrossRefGoogle Scholar
  42. Cluzeau CV, Watkins-Chow DE, Fu R, Borate B, Yanjanin N, Dail MK, Davidson CD, Walkley SU, Ory DS, Wassif CA, Pavan WJ, Porter FD (2012) Microarray expression analysis and identification of serum biomarkers for Niemann-Pick disease, type C1. Hum Mol Genet 21:3632–3646CrossRefGoogle Scholar
  43. Colell A, Garcia-Ruiz C, Morales A, Ballesta A, Ookhtens M, Rodes J, Kaplowitz N, Fernandez-Checa JC (1997) Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine. Hepatol 26:699–708Google Scholar
  44. Colell A, Garcia-Ruiz C, Lluis JM, Coll O, Mari M, Fernandez-Checa JC (2003) Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J Biol Chem 278:33928–33935CrossRefGoogle Scholar
  45. Coll O, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2003) Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatol 38:692–702CrossRefGoogle Scholar
  46. Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochim Biophys Acta 1818:1457–1465CrossRefGoogle Scholar
  47. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890CrossRefGoogle Scholar
  48. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nat 456:605–610CrossRefGoogle Scholar
  49. Dietzen DJ, Davis EJ (1994) Excess membrane cholesterol is not responsible for metabolic and bioenergetic changes in AS-30D hepatoma mitochondria. Arch Biochem Biophys 309:341–347CrossRefGoogle Scholar
  50. Duarte A, Poderoso C, Cooke M, Soria G, Cornejo MF, Gottifredi V, Podesta EJ (2012) Mitochondrial fusion is essential for steroid biosynthesis. PLoS One 7:e45829CrossRefGoogle Scholar
  51. Echegoyen S, Oliva EB, Sepulveda J, Diaz-Zagoya JC, Espinosa-Garcia MT, Pardo JP, Martinez F (1993) Cholesterol increase in mitochondria: its effect on inner-membrane functions, submitochondrial localization and ultrastructural morphology. Biochem J 289(Pt 3):703–708CrossRefGoogle Scholar
  52. Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP (2014) Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol 50(1):107–118CrossRefGoogle Scholar
  53. Fafalios A, Akhavan A, Parwani AV, Bies RR, McHugh KJ, Pflug BR (2009) Translocator protein blockade reduces prostate tumor growth. Clin Cancer Res 15:6177–6184CrossRefGoogle Scholar
  54. Fan J, Liu J, Culty M, Papadopoulos V (2010) Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res 49:218–234CrossRefGoogle Scholar
  55. Fang HY, Chang CL, Hsu SH, Huang CY, Chiang SF, Chiou SH, Huang CH, Hsiao YT, Lin TY, Chiang IP, Hsu WH, Sugano S, Chen CY, Lin CY, Ko WJ, Chow KC (2010) ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J Cell Sci 123:1171–1180CrossRefGoogle Scholar
  56. Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405CrossRefGoogle Scholar
  57. Fernandez A, Matias N, Fucho R, Ribas V, Von Montfort C, Nuno N, Baulies A, Martinez L, Tarrats N, Mari M, Colell A, Morales A, Dubuquoy L, Mathurin P, Bataller R, Caballeria J, Elena M, Balsinde J, Kaplowitz N, Garcia-Ruiz C, Fernandez-Checa JC (2013) ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. J Hepatol 59:805–813CrossRefGoogle Scholar
  58. Fridolfsson HN, Kawaraguchi Y, Ali SS, Panneerselvam M, Niesman IR, Finley JC, Kellerhals SE, Migita MY, Okada H, Moreno AL, Jennings M, Kidd MW, Bonds JA, Balijepalli RC, Ross RS, Patel PM, Miyanohara A, Chen Q, Lesnefsky EJ, Head BP, Roth DM, Insel PA, Patel HH (2012) Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB J 26:4637–4649CrossRefGoogle Scholar
  59. Fu R, Yanjanin NM, Bianconi S, Pavan WJ, Porter FD (2010) Oxidative stress in Niemann-Pick disease, type C. Mol Genet Metab 101:214–218CrossRefGoogle Scholar
  60. Fujimoto M, Hayashi T, Su TP (2012) The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria. Biochem Biophys Res Commun 417:635–639CrossRefGoogle Scholar
  61. Garbarino J, Pan M, Chin HF, Lund FW, Maxfield FR, Breslow JL (2012) STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC. J Lipid Res 53:2716–2725CrossRefGoogle Scholar
  62. Geula S, Ben-Hail D, Shoshan-Barmatz V (2012) Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochem J 444:475–485CrossRefGoogle Scholar
  63. Gilquin B, Taillebourg E, Cherradi N, Hubstenberger A, Gay O, Merle N, Assard N, Fauvarque MO, Tomohiro S, Kuge O, Baudier J (2010) The AAA + ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol 30:1984–1996CrossRefGoogle Scholar
  64. Gomes C, Oh SD, Kim JW, Chun SY, Lee K, Kwon HB, Soh J (2005) Expression of the putative sterol binding protein Stard6 gene is male germ cell specific. Biol Reprod 72:651–658CrossRefGoogle Scholar
  65. Ha SD, Park S, Han CY, Nguyen ML, Kim SO (2012) Cellular adaptation to anthrax lethal toxin-induced mitochondrial cholesterol enrichment, hyperpolarization, and reactive oxygen species generation through downregulating MLN64 in macrophages. Mol Cell Biol 32:4846–4860CrossRefGoogle Scholar
  66. Hackenbrock CR, Chazotte B (1986) Lipid enrichment and fusion of mitochondrial inner membranes. Methods Enzymol 125:35–45CrossRefGoogle Scholar
  67. Hall EA, Ren S, Hylemon PB, Rodriguez-Agudo D, Redford K, Marques D, Kang D, Gil G, Pandak WM (2005) Detection of the steroidogenic acute regulatory protein, StAR, in human liver cells. Biochim Biophys Acta 1733:111–119CrossRefGoogle Scholar
  68. Hayashi T, Fujimoto M (2010) Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 77:517–528CrossRefGoogle Scholar
  69. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88CrossRefGoogle Scholar
  70. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B (2013) Organization and function of membrane contact sites. Biochim Biophys Acta 1833:2526–2541CrossRefGoogle Scholar
  71. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Sci 321:1206–1210CrossRefGoogle Scholar
  72. Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (2010) The 3D structures of VDAC represent a native conformation. Trends Biochem Sci 35:514–521CrossRefGoogle Scholar
  73. Holtta-Vuori M, Alpy F, Tanhuanpaa K, Jokitalo E, Mutka AL, Ikonen E (2005) MLN64 is involved in actin-mediated dynamics of late endocytic organelles. Mol Biol Cell 16:3873–3886CrossRefGoogle Scholar
  74. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614CrossRefGoogle Scholar
  75. Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138CrossRefGoogle Scholar
  76. Issop L., Rone M.B., Papadopoulos V. (2012). Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell EndocrinolGoogle Scholar
  77. Iyer LM, Koonin EV, Aravind L (2001) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43:134–144CrossRefGoogle Scholar
  78. Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, Robert JC, Giatzakis C, Papadopoulos V, Lacapere JJ (2005) Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 19:588–594CrossRefGoogle Scholar
  79. Karten B, Peake KB, Vance JE (2009) Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta 1791:659–670CrossRefGoogle Scholar
  80. Katz Y, Ben-Baruch G, Kloog Y, Menczer J, Gavish M (1990) Increased density of peripheral benzodiazepine-binding sites in ovarian carcinomas as compared with benign ovarian tumours and normal ovaries. Clin Sci (Lond) 78:155–158CrossRefGoogle Scholar
  81. Kennedy BE, Charman M, Karten B (2012) Niemann-Pick Type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. J Lipid Res 53:2632–2642CrossRefGoogle Scholar
  82. Kennedy BE, Leblanc VG, Mailman TM, Fice D, Burton I, Karakach TK, Karten B (2013) Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in niemann-pick type c1-deficient murine brain. PLoS One 8:e82685CrossRefGoogle Scholar
  83. Kennedy BE, Madreiter CT, Vishnu N, Malli R, Graier WF, Karten B (2014) Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J Biol Chem 289(23):16278–16289CrossRefGoogle Scholar
  84. Kishida T, Kostetskii I, Zhang Z, Martinez F, Liu P, Walkley SU, Dwyer NK, Blanchette-Mackie EJ, Radice GL, Strauss JF 3rd (2004) Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J Biol Chem 279:19276–19285CrossRefGoogle Scholar
  85. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337CrossRefGoogle Scholar
  86. Kraemer FB, Khor VK, Shen WJ, Azhar S (2013) Cholesterol ester droplets and steroidogenesis. Mol Cell Endocrinol 371:15–19CrossRefGoogle Scholar
  87. Lacapere JJ, Papadopoulos V (2003) Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 68:569–585CrossRefGoogle Scholar
  88. Lange Y, Steck TL, Ye J, Lanier MH, Molugu V, Ory D (2009) Regulation of fibroblast mitochondrial 27-hydroxycholesterol production by active plasma membrane cholesterol. J Lipid Res 50:1881–1888CrossRefGoogle Scholar
  89. Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67CrossRefGoogle Scholar
  90. Lavigne P, Najmanivich R, Lehoux JG (2010) Mammalian StAR-related lipid transfer (START) domains with specificity for cholesterol: structural conservation and mechanism of reversible binding. Subcell Biochem 51:425–437CrossRefGoogle Scholar
  91. LaVoie HA, Whitfield NE, Shi B, King SR, Bose HS, Hui YY (2014) STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis. Exp Biol Med (Maywood) 239:430–435CrossRefGoogle Scholar
  92. Letourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, LeHoux JG (2012) StAR-related lipid transfer domain protein 5 binds primary bile acids. J Lipid Res 53:2677–2689CrossRefGoogle Scholar
  93. Letourneau D, Lefebvre A, Lavigne P, LeHoux JG (2013a) STARD5 specific ligand binding: comparison with STARD1 and STARD4 subfamilies. Mol Cell Endocrinol 371:20–25CrossRefGoogle Scholar
  94. Letourneau D, Lorin A, Lefebvre A, Cabana J, Lavigne P, LeHoux JG (2013b) Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5. Biochim Biophys Acta 1831:1589–1599CrossRefGoogle Scholar
  95. Lev S (2010) Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol 11:739–750CrossRefGoogle Scholar
  96. Li S, Rousseau D (2012) ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression. J Bioenerg Biomembr 44:189–197CrossRefGoogle Scholar
  97. Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V (2001) Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci U S A 98:1267–1272CrossRefGoogle Scholar
  98. Li S, Lamarche F, Charton R, Delphin C, Gires O, Hubstenberger A, Schlattner U, Rousseau D (2014) Expression analysis of ATAD3 isoforms in rodent and human cell lines and tissues. Gene 535:60–69CrossRefGoogle Scholar
  99. Liapis A, Chen FW, Davies JP, Wang R, Ioannou YA (2012) MLN64 transport to the late endosome is regulated by binding to 14-3-3 via a non-canonical binding site. PLoS One 7:e34424CrossRefGoogle Scholar
  100. Liu J, Li H, Papadopoulos V (2003) PAP7, a PBR/PKA-RIalpha-associated protein: a new element in the relay of the hormonal induction of steroidogenesis. J Steroid Biochem Mol Biol 85:275–283CrossRefGoogle Scholar
  101. Liu J, Rone MB, Papadopoulos V (2006) Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem 281:38879–38893CrossRefGoogle Scholar
  102. Llacuna L, Fernandez A, Montfort CV, Matias N, Martinez L, Caballero F, Rimola A, Elena M, Morales A, Fernandez-Checa JC, Garcia-Ruiz C (2011) Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. J Hepatol 54:1002–1010CrossRefGoogle Scholar
  103. Lluis JM, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2003) Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterol 124:708–724CrossRefGoogle Scholar
  104. Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ 15:484–493CrossRefGoogle Scholar
  105. Madden TD, Vigo C, Bruckdorfer KR, Chapman D (1980) The incorporation of cholesterol into inner mitochondrial membranes and its effect on lipid phase transition. Biochim Biophys Acta 599:528–537CrossRefGoogle Scholar
  106. Mailloux RJ, McBride SL, Harper ME (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38:592–602CrossRefGoogle Scholar
  107. Maldonado EN, Lemasters JJ (2012) Warburg revisited: regulation of mitochondrial metabolism by voltage-dependent anion channels in cancer cells. J Pharmacol Exp Ther 342:637–641CrossRefGoogle Scholar
  108. Manczak M, Reddy PH (2012) Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum Mol Genet 21:5131–5146CrossRefGoogle Scholar
  109. Manna PR, Dyson MT, Stocco DM (2009) Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 15:321–333CrossRefGoogle Scholar
  110. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, Garcia-Ruiz C (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:185–198CrossRefGoogle Scholar
  111. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700CrossRefGoogle Scholar
  112. Mari M, Morales A, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2013) Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta 1830:3317–3328CrossRefGoogle Scholar
  113. Martinez F, Eschegoyen S, Briones R, Cuellar A (1988) Cholesterol increase in mitochondria: a new method of cholesterol incorporation. J Lipid Res 29:1005–1011Google Scholar
  114. Martinez-Abundis E, Garcia N, Correa F, Franco M, Zazueta C (2007) Changes in specific lipids regulate BAX-induced mitochondrial permeability transition. FEBS J 274:6500–6510CrossRefGoogle Scholar
  115. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A 89:3170–3174CrossRefGoogle Scholar
  116. Mei S, Gu H, Yang X, Guo H, Liu Z, Cao W (2012) Prolonged exposure to insulin induces mitochondrion-derived oxidative stress through increasing mitochondrial cholesterol content in hepatocytes. Endocrinol 153:2120–2129CrossRefGoogle Scholar
  117. Mesmin B, Maxfield FR (2009) Intracellular sterol dynamics. Biochim Biophys Acta 1791:636–645CrossRefGoogle Scholar
  118. Mesmin B, Pipalia NH, Lund FW, Ramlall TF, Sokolov A, Eliezer D, Maxfield FR (2011) STARD4 abundance regulates sterol transport and sensing. Mol Biol Cell 22:4004–4015CrossRefGoogle Scholar
  119. Metallo CM, Vander Heiden MG (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49:388–398CrossRefGoogle Scholar
  120. Miller WL (2007) Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 1771:663–676CrossRefGoogle Scholar
  121. Miller WL, Bose HS (2011) Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 52:2111–2135CrossRefGoogle Scholar
  122. Mlayeh L, Chatkaew S, Leonetti M, Homble F (2010) Modulation of plant mitochondrial VDAC by phytosterols. Biophys J 99:2097–2106CrossRefGoogle Scholar
  123. Mohamed A, Saavedra L, Di Pardo A, Sipione S, de Chaves Posse E (2012) beta-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 32:6490–6500CrossRefGoogle Scholar
  124. Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basanez G, Antonsson B, Prieto J, Garcia-Ruiz C, Colell A, Fernandez-Checa JC (2008) Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 68:5246–5256CrossRefGoogle Scholar
  125. Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, Fernandez-Checa JC (2010) Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta 1797:1217–1224CrossRefGoogle Scholar
  126. Moog-Lutz C, Tomasetto C, Regnier CH, Wendling C, Lutz Y, Muller D, Chenard MP, Basset P, Rio MC (1997) MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer 71:183–191CrossRefGoogle Scholar
  127. Murcia M, Faraldo-Gomez JD, Maxfield FR, Roux B (2006) Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J Lipid Res 47:2614–2630CrossRefGoogle Scholar
  128. Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16:476–495CrossRefGoogle Scholar
  129. Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791:441–447CrossRefGoogle Scholar
  130. Ordonez MP, Roberts EA, Kidwell CU, Yuan SH, Plaisted WC, Goldstein LS (2012) Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1. Hum Mol Genet 21:2651–2662CrossRefGoogle Scholar
  131. Ory DS (2004) The niemann-pick disease genes; regulators of cellular cholesterol homeostasis. Trends Cardiovasc Med 14:66–72CrossRefGoogle Scholar
  132. Papadopoulos V, Liu J, Culty M (2007) Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol 265–266:59–64CrossRefGoogle Scholar
  133. Paradies G, Ruggiero FM (1990) Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim Biophys Acta 1016:207–212CrossRefGoogle Scholar
  134. Paradies G, Ruggiero FM (1991) Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch Biochem Biophys 284:332–337CrossRefGoogle Scholar
  135. Paradies G, Ruggiero FM, Dinoi P (1992) Decreased activity of the phosphate carrier and modification of lipids in cardiac mitochondria from senescent rats. Int J Biochem 24:783–787CrossRefGoogle Scholar
  136. Paradies G, Ruggiero FM, Petrosillo G, Gadaleta MN, Quagliariello E (1994) The effect of aging and acetyl-L-carnitine on the function and on the lipid composition of rat heart mitochondria. Ann N Y Acad Sci 717:233–243CrossRefGoogle Scholar
  137. Paradies G, Petrosillo G, Gadaleta MN, Ruggiero FM (1999) The effect of aging and acetyl-L-carnitine on the pyruvate transport and oxidation in rat heart mitochondria. FEBS Lett 454:207–209CrossRefGoogle Scholar
  138. Paradis S, Leoni V, Caccia C, Berdeaux A, Morin D (2013) Cardioprotection by the TSPO ligand 4′-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 98:420–427CrossRefGoogle Scholar
  139. Parlo RA, Coleman PS (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 259:9997–10003Google Scholar
  140. Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40:171–182CrossRefGoogle Scholar
  141. Ponting CP, Aravind L (1999) START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci 24:130–132CrossRefGoogle Scholar
  142. Popp B, Schmid A, Benz R (1995) Role of sterols in the functional reconstitution of water-soluble mitochondrial porins from different organisms. Biochem 34:3352–3361CrossRefGoogle Scholar
  143. Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, Olzeski D, Sidhu R, Dietzen DJ, Fu R, Wassif CA, Yanjanin NM, Marso SP, House J, Vite C, Schaffer JE, Ory DS (2010) Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med 2:56ra81CrossRefGoogle Scholar
  144. Prabhu AV, Krycer JR, Brown AJ (2013) Overexpression of a key regulator of lipid homeostasis, Scap, promotes respiration in prostate cancer cells. FEBS Lett 587:983–988CrossRefGoogle Scholar
  145. Raturi A, Simmen T (2013) Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 1833:213–224CrossRefGoogle Scholar
  146. Reitz J, Gehrig-Burger K, Strauss JF 3rd, Gimpl G (2008) Cholesterol interaction with the related steroidogenic acute regulatory lipid-transfer (START) domains of StAR (STARD1) and MLN64 (STARD3). FEBS J 275:1790–1802CrossRefGoogle Scholar
  147. Ren S, Hylemon P, Marques D, Hall E, Redford K, Gil G, Pandak WM (2004) Effect of increasing the expression of cholesterol transporters (StAR, MLN64, and SCP-2) on bile acid synthesis. J Lipid Res 45:2123–2131CrossRefGoogle Scholar
  148. Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2014) Glutathione and mitochondria. Front Pharmacol 5:151CrossRefGoogle Scholar
  149. Riegelhaupt JJ, Waase MP, Garbarino J, Cruz DE, Breslow JL (2010) Targeted disruption of steroidogenic acute regulatory protein D4 leads to modest weight reduction and minor alterations in lipid metabolism. J Lipid Res 51:1134–1143CrossRefGoogle Scholar
  150. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Sci 280:1763–1766CrossRefGoogle Scholar
  151. Rodriguez-Agudo D, Ren S, Wong E, Marques D, Redford K, Gil G, Hylemon P, Pandak WM (2008) Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J Lipid Res 49:1409–1419CrossRefGoogle Scholar
  152. Rodriguez-Agudo D, Calderon-Dominguez M, Medina MA, Ren S, Gil G, Pandak WM (2012) ER stress increases StarD5 expression by stabilizing its mRNA and leads to relocalization of its protein from the nucleus to the membranes. J Lipid Res 53:2708–2715CrossRefGoogle Scholar
  153. Rone MB, Fan J, Papadopoulos V (2009) Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta 1791:646–658CrossRefGoogle Scholar
  154. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan J, Ye X, Blonder J, Veenstra T, Papadopoulos V (2012) Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol 26:1868–1882CrossRefGoogle Scholar
  155. Rosenbaum AI, Maxfield FR (2011) Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 116:789–795CrossRefGoogle Scholar
  156. Rostovtseva TK, Bezrukov SM (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170CrossRefGoogle Scholar
  157. Rostovtseva TK, Gurnev PA, Chen MY, Bezrukov SM (2012) Membrane lipid composition regulates tubulin interaction with mitochondrial voltage-dependent anion channel. J Biol Chem 287:29589–29598CrossRefGoogle Scholar
  158. Rouslin W, MacGee J, Gupte S, Wesselman A, Epps DE (1982) Mitochondrial cholesterol content and membrane properties in porcine myocardial ischemia. Am J Physiol 242:H254–H259Google Scholar
  159. Rusinol AE, Cui Z, Chen MH, Vance JE (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269:27494–27502Google Scholar
  160. Sangeetha T, Darlin QS (2009) Preventive effect of S-allyl cysteine sulphoxide (Alliin) on mitochondrial dysfunction in normal and isoproterenol induced cardiotoxicity in male Wistar rats: a histopathological study. Mol Cell Biochem 328:1–8CrossRefGoogle Scholar
  161. Sarosiek KA, Ni Chonghaile T, Letai A (2013) Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol 23:612–619CrossRefGoogle Scholar
  162. Sheftel AD, Zhang AS, Brown C, Shirihai OS, Ponka P (2007) Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110:125–132CrossRefGoogle Scholar
  163. Shoshan-Barmatz V, Golan M (2012) Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 19:714–735CrossRefGoogle Scholar
  164. Smart EJ, Ying Y, Donzell WC, Anderson RG (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271:29427–29435CrossRefGoogle Scholar
  165. Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK, Breslow JL (2002) The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci U S A 99:6943–6948CrossRefGoogle Scholar
  166. Soccio RE, Adams RM, Maxwell KN, Breslow JL (2005) Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress. J Biol Chem 280:19410–19418CrossRefGoogle Scholar
  167. Stigliano A, Gandini O, Cerquetti L, Gazzaniga P, Misiti S, Monti S, Gradilone A, Falasca P, Poggi M, Brunetti E, Agliano AM, Toscano V (2007) Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer. J Endocrinol 194:55–61CrossRefGoogle Scholar
  168. Strauss JF 3rd, Kishida T, Christenson LK, Fujimoto T, Hiroi H (2003) START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol Cell Endocrinol 202:59–65CrossRefGoogle Scholar
  169. Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L (2012) Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 287:40652–40660CrossRefGoogle Scholar
  170. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632CrossRefGoogle Scholar
  171. Thinnes FP, Burckhardt G (2012) On a fully closed state of native human type-1 VDAC enriched in Nonidet P40. Mol Genet Metab 107:632–633CrossRefGoogle Scholar
  172. Tomasetto C, Regnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau R, Basset P, Rio MC (1995) Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. Genom 28:367–376CrossRefGoogle Scholar
  173. Tsujishita Y, Hurley JH (2000) Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol 7:408–414CrossRefGoogle Scholar
  174. Tuckey RC, Bose HS, Czerwionka I, Miller WL (2004) Molten globule structure and steroidogenic activity of N-218 MLN64 in human placental mitochondria. Endocrinol 145:1700–1707CrossRefGoogle Scholar
  175. van Vliet AR, Verfaillie T, Agostinis P (2014) New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843(10):2253–2262CrossRefGoogle Scholar
  176. Vance JE (2014) MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 1841:595–609CrossRefGoogle Scholar
  177. Vazquez MC, Balboa E, Alvarez AR, Zanlungo S (2012) Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease. Oxid Med Cell Longev 2012:205713CrossRefGoogle Scholar
  178. Watari H, Arakane F, Moog-Lutz C, Kallen CB, Tomasetto C, Gerton GL, Rio MC, Baker ME, Strauss JF 3rd (1997) MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci U S A 94:8462–8467CrossRefGoogle Scholar
  179. West LA, Horvat RD, Roess DA, Barisas BG, Juengel JL, Niswender GD (2001) Steroidogenic acute regulatory protein and peripheral-type benzodiazepine receptor associate at the mitochondrial membrane. Endocrinol 142:502–505CrossRefGoogle Scholar
  180. Williamson CD, Zhang A, Colberg-Poley AM (2011) The human cytomegalovirus protein UL37 exon 1 associates with internal lipid rafts. J Virol 85:2100–2111CrossRefGoogle Scholar
  181. Yamada S, Yamaguchi T, Hosoda A, Iwawaki T, Kohno K (2006) Regulation of human STARD4 gene expression under endoplasmic reticulum stress. Biochem Biophys Res Commun 343:1079–1085CrossRefGoogle Scholar
  182. Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M (2005) Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 280:11731–11739CrossRefGoogle Scholar
  183. Zhang M, Liu P, Dwyer NK, Christenson LK, Fujimoto T, Martinez F, Comly M, Hanover JA, Blanchette-Mackie EJ, Strauss JF 3rd (2002) MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J Biol Chem 277:33300–33310CrossRefGoogle Scholar
  184. Ziolkowski W, Szkatula M, Nurczyk A, Wakabayashi T, Kaczor JJ, Olek RA, Knap N, Antosiewicz J, Wieckowski MR, Wozniak M (2010) Methyl-beta-cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Lett 584:4606–4610CrossRefGoogle Scholar
  185. Ziolkowski W, Vadhana MSD, Kaczor JJ, Olek RA, Flis DJ, Halon M, Wozniak M, Fedeli D, Carloni M, Antosiewicz J, Gabbianelli R (2013) Exercise-induced heart mitochondrial cholesterol depletion influences the inhibition of mitochondrial swelling. Exp Physiol 98:1457–1468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laura A. Martin
    • 1
  • Barry E. Kennedy
    • 1
  • Barbara Karten
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations