Skip to main content

Advertisement

Log in

Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier?

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Ubiquinone, commonly called coenzyme Q10 (CoQ), is a lipophilic electron carrier and endogenous antioxidant found in all cellular membranes. In the mitochondrial inner membrane it transfers electrons to complex III of the electron transport chain. The short chain CoQ analogue idebenone is in clinical trials for a number of diseases that exhibit a mitochondrial etiology. Nevertheless, evidence that idebenone ameliorates neurological symptoms in human disease is inconsistent. Although championed as an antioxidant, idebenone can also act as a pro-oxidant by forming an unstable semiquinone at complex I. The antioxidant function of idebenone is critically dependent on two-electron reduction to idebenol without the creation of unstable intermediates. Recently, cytoplasmic NAD(P)H:quinone oxidoreductase 1 (NQO1) was identified as a major enzyme catalyzing idebenone reduction. While reduction allows idebenone to act as an antioxidant, evidence also suggests that NQO1 enables idebenone to shuttle reducing equivalents from cytoplasmic NAD(P)H to mitochondrial complex III, bypassing any upstream damage to the electron transport chain. In this mini-review we discuss how idebenone can influence mitochondrial function within the context of cytoprotection. Importantly, in the brain NQO1 is expressed primarily by glia rather than neurons. As NQO1 is an inducible enzyme regulated by oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, optimizing NQO1 expression in appropriate cell types within a specific disease context may be key to delivering on idebenone’s therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARE:

antioxidant response element

CoQ:

coenzyme Q10

ETC:

electron transport chain

FMN:

flavin mononucleotide

IdBH2 :

idebenol

Keap1:

Kelch-like ECH-associated protein 1

NQO:

NAD(P)H:quinone acceptor oxidoreductase

Nrf2:

nuclear factor erythroid 2-related factor 2

References

  • Ahlgren-Beckendorf JA, Reising AM, Schander MA, Herdler JW, Johnson JA (1999) Coordinate regulation of NAD (P) H:quinone oxidoreductase and glutathione-S-transferases in primary cultures of rat neurons and glia: role of the antioxidant/electrophile responsive element. Glia 25:131–142

    Article  CAS  Google Scholar 

  • Bell KF, Al-Mubarak B, Fowler JH, Baxter PS, Gupta K, Tsujita T, Chowdhry S, Patani R, Chandran S, Horsburgh K, Hayes JD, Hardingham GE (2011) Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc Natl Acad Sci U S A 108:E1–E2

    Article  CAS  Google Scholar 

  • Bergamasco B, Scarzella L, La CP (1994) Idebenone, a new drug in the treatment of cognitive impairment in patients with dementia of the Alzheimer type. Funct Neurol 9:161–168

    CAS  Google Scholar 

  • Beyer RE, Segura AJ, Di BS, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M, Landi L, Lenaz G (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci U S A 93:2528–2532

    Article  CAS  Google Scholar 

  • Briere JJ, Schlemmer D, Chretien D, Rustin P (2004) Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochem Biophys Res Commun 316:1138–1142

    Article  CAS  Google Scholar 

  • Bruno V, Battaglia G, Copani A, Sortino MA, Canonico PL, Nicoletti F (1994) Protective action of idebenone against excitotoxic degeneration in cultured cortical neurons. Neurosci Lett 178:193–196

    Article  CAS  Google Scholar 

  • Cardoso SM, Pereira C, Oliveira CR (1998) The protective effect of vitamin E, idebenone and reduced glutathione on free radical mediated injury in rat brain synaptosomes. Biochem Biophys Res Commun 246:703–710

    Article  CAS  Google Scholar 

  • Chan TS, Teng S, Wilson JX, Galati G, Khan S, O’brien PJ (2002) Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD (P) H: quinone oxidoreductase 1 (NQO1). Free Radic Res 36:421–427

    Article  CAS  Google Scholar 

  • Conover TE, Ernster L (1962) DT diaphorase. II. relation to respiratory chain of intact mitochondira. Biochim Biophys Acta 58:189–200

    Article  CAS  Google Scholar 

  • Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–171

    Article  CAS  Google Scholar 

  • Di Prospero NA, Baker A, Jeffries N, Fischbeck KH (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6:878–886

    Article  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2010) NAD (P) H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501:116–123

    Article  CAS  Google Scholar 

  • Dong H, Shertzer HG, Genter MB, Gonzalez FJ, Vasiliou V, Jefcoate C, Nebert DW (2013) Mitochondrial targeting of mouse NQO1 and CYP1B1 proteins. Biochem Biophys Res Commun 435:727–732

    Article  CAS  Google Scholar 

  • Dragan M, Dixon SJ, Jaworski E, Chan TS, O’brien PJ, Wilson JX (2006) Coenzyme Q (1) depletes NAD (P) H and impairs recycling of ascorbate in astrocytes. Brain Res 1078:9–18

    Article  CAS  Google Scholar 

  • Erb M, Hoffmann-Enger B, Deppe H, Soeberdt M, Haefeli RH, Rummey C, Feurer A, Gueven N (2012) Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS One 7:e36153

    Article  CAS  Google Scholar 

  • Esposti MD, Ngo A, Ghelli A, Benelli B, Carelli V, McLennan H, Linnane AW (1996) The interaction of Q analogs, particularly hydroxydecyl benzoquinone (idebenone), with the respiratory complexes of heart mitochondria. Arch Biochem Biophys 330:395–400

    Article  CAS  Google Scholar 

  • Fash DM, Khdour OM, Sahdeo SJ, Goldschmidt R, Jaruvangsanti J, Dey S, Arce PM, Collin VC, Cortopassi GA, Hecht SM (2013) Effects of alkyl side chain modification of coenzyme Q10 on mitochondrial respiratory chain function and cytoprotection. Bioorg Med Chem 21:2346–2354, S0968-0896 (13) 00125-9

    Article  CAS  Google Scholar 

  • Fato R, Bergamini C, Leoni S, Lenaz G (2008) Mitochondrial production of reactive oxygen species: role of complex I and quinone analogues. Biofactors 32:31–39

    Article  CAS  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti CG, Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505:364–368

    Article  CAS  Google Scholar 

  • Genova ML, Pich MM, Biondi A, Bernacchia A, Falasca A, Bovina C, Formiggini G, Parenti CG, Lenaz G (2003) Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp Biol Med Maywood 228:506–513

    CAS  Google Scholar 

  • Geromel V, Darin N, Chretien D, Benit P, DeLonlay P, Rotig A, Munnich A, Rustin P (2002) Coenzyme Q (10) and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metab 77:21–30

    Article  CAS  Google Scholar 

  • Giorgio V, Petronilli V, Ghelli A, Carelli V, Rugolo M, Lenaz G, Bernardi P (2012) The effects of idebenone on mitochondrial bioenergetics. Biochim Biophys Acta 1817:363–369

    Article  CAS  Google Scholar 

  • Greco T, Fiskum G (2010) Neuroprotection through stimulation of mitochondrial antioxidant protein expression. J Alzheimers Dis 20(Suppl 2):S427–S437

    Google Scholar 

  • Gutzmann H, Hadler D (1998) Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: update on a 2-year double-blind multicentre study. J Neural Transm Suppl 54:301–310

    Article  CAS  Google Scholar 

  • Gutzmann H, Kuhl KP, Hadler D, Rapp MA (2002) Safety and efficacy of idebenone versus tacrine in patients with Alzheimer’s disease: results of a randomized, double-blind, parallel-group multicenter study. Pharmacopsychiatry 35:12–18

    Article  CAS  Google Scholar 

  • Habas A, Hahn J, Wang X, Margeta M (2013) Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci U S A 110:18291–18296

    Article  CAS  Google Scholar 

  • Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier FI, Anklin C, Dallmann R, Gueven N (2011) NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One 6:e17963

    Article  CAS  Google Scholar 

  • Heitz FD, Erb M, Anklin C, Robay D, Pernet V, Gueven N (2012) Idebenone protects against retinal damage and loss of vision in a mouse model of Leber’s hereditary optic neuropathy. PLoS One 7:e45182

    Article  CAS  Google Scholar 

  • Imada I, Fujita T, Sugiyama Y, Okamoto K, Kobayashi Y (1989) Effects of idebenone and related compounds on respiratory activities of brain mitochondria, and on lipid peroxidation of their membranes. Arch Gerontol Geriatr 8:323–341

    Article  CAS  Google Scholar 

  • Imada I, Sato EF, Kira Y, Inoue M (2008) Effect of CoQ homologues on reactive oxygen generation by mitochondria. Biofactors 32:41–48

    Article  CAS  Google Scholar 

  • Joseph P, Jaiswal AK (1994) NAD (P) H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo [a] pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase. Proc Natl Acad Sci U S A 91:8413–8417

    Article  CAS  Google Scholar 

  • Kalen A, Norling B, Appelkvist EL, Dallner G (1987) Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta 926:70–78

    Article  CAS  Google Scholar 

  • Kim J, Lee S, Shim J, Kim HW, Kim J, Jang YJ, Yang H, Park J, Choi SH, Yoon JH, Lee KW, Lee HJ (2012) Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H (2) O (2)-induced apoptosis in primary cortical neurons. Neurochem Int 60:466–474

    Article  CAS  Google Scholar 

  • Kim J, Kim SK, Kim HK, Mattson MP, Hyun DH (2013) Mitochondrial function in human neuroblastoma cells Is up-regulated and protected by NQO1, a plasma membrane redox enzyme. PLoS One 8:e69030

    Article  CAS  Google Scholar 

  • King MS, Sharpley MS, Hirst J (2009) Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I) and production of reactive oxygen species. Biochemistry 48:2053–2062

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  CAS  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24:1101–1112

    Article  CAS  Google Scholar 

  • Kutz K, Drewe J, Vankan P (2009) Pharmacokinetic properties and metabolism of idebenone. J Neurol 256(Suppl 1):31–35

    Article  CAS  Google Scholar 

  • Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104

    Article  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  Google Scholar 

  • Lind C, Hochstein P, Ernster L (1982) DT-diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch Biochem Biophys 216:178–185

    Article  CAS  Google Scholar 

  • Lopez LC, Quinzii CM, Area E, Naini A, Rahman S, Schuelke M, Salviati L, Dimauro S, Hirano M (2010) Treatment of CoQ (10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 5:e11897

    Article  Google Scholar 

  • Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 67:941–947

    Article  Google Scholar 

  • Meier T, Buyse G (2009) Idebenone: an emerging therapy for Friedreich ataxia. J Neurol 256(Suppl 1):25–30

    Article  CAS  Google Scholar 

  • Meier T, Perlman SL, Rummey C, Coppard NJ, Lynch DR (2012) Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol 259:284–291

    Article  CAS  Google Scholar 

  • Miyamoto M, Coyle JT (1990) Idebenone attenuates neuronal degeneration induced by intrastriatal injection of excitotoxins. Exp Neurol 108:38–45

    Article  CAS  Google Scholar 

  • Miyamoto M, Murphy TH, Schnaar RL, Coyle JT (1989) Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther 250:1132–1140

    CAS  Google Scholar 

  • Mordente A, Martorana GE, Minotti G, Giardina B (1998) Antioxidant properties of 2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone (idebenone). Chem Res Toxicol 11:54–63

    Article  CAS  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4:1624–1633

    CAS  Google Scholar 

  • Murphy TH, Yu J, Ng R, Johnson DA, Shen H, Honey CR, Johnson JA (2001) Preferential expression of antioxidant response element mediated gene expression in astrocytes. J Neurochem 76:1670–1678

    Article  CAS  Google Scholar 

  • Nagai Y, Yoshida K, Narumi S, Tanayama S, Nagaoka A (1989) Brain distribution of idebenone and its effect on local cerebral glucose utilization in rats. Arch Gerontol Geriatr 8:257–272

    Article  CAS  Google Scholar 

  • Nagaoka A, Suno M, Shibota M, Kakihana M (1989) Effects of idebenone on neurological deficits, local cerebral blood flow, and energy metabolism in rats with experimental cerebral ischemia. Arch Gerontol Geriatr 8:193–202

    Article  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2013) Bioenergetics 4. Academic, London

    Google Scholar 

  • O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41

    Article  Google Scholar 

  • Ohnishi ST, Ohnishi T, Muranaka S, Fujita H, Kimura H, Uemura K, Yoshida K, Utsumi K (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J Bioenerg Biomembr 37:1–15

    Article  CAS  Google Scholar 

  • Parkinson MH, Schulz JB, Giunti P (2013) Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem 126(Suppl 1):125–141

    Article  CAS  Google Scholar 

  • Pereira CF, Oliveira CR (2000) Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis. Neurosci Res 37:227–236

    Article  CAS  Google Scholar 

  • Petronilli V, Costantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P (1994) The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 269:16638–16642

    CAS  Google Scholar 

  • Raina AK, Templeton DJ, Deak JC, Perry G, Smith MA (1999) Quinone reductase (NQO1), a sensitive redox indicator, is increased in Alzheimer’s disease. Redox Rep 4:23–27

    Article  CAS  Google Scholar 

  • Ranen NG, Peyser CE, Coyle JT, Bylsma FW, Sherr M, Day L, Folstein MF, Brandt J, Ross CA, Folstein SE (1996) A controlled trial of idebenone in Huntington’s disease. Mov Disord 11:549–554

    Article  CAS  Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 62:376–379

    Article  CAS  Google Scholar 

  • Rauchova H, Drahota Z, Bergamini C, Fato R, Lenaz G (2008) Modification of respiratory-chain enzyme activities in brown adipose tissue mitochondria by idebenone (hydroxydecyl-ubiquinone). J Bioenerg Biomembr 40:85–93

    Article  CAS  Google Scholar 

  • Rotig A, De LP, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  CAS  Google Scholar 

  • SantaCruz KS, Yazlovitskaya E, Collins J, Johnson J, DeCarli C (2004) Regional NAD (P) H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol Aging 25:63–69

    Article  CAS  Google Scholar 

  • Satoh T, Okamoto SI, Cui J, Watanabe Y, Furuta K, Suzuki M, Tohyama K, Lipton SA (2006) Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc Natl Acad Sci U S A 103:768–773

    Article  CAS  Google Scholar 

  • Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 104:1116–1131

    Article  CAS  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010

    Article  CAS  Google Scholar 

  • Schultzberg M, Segura-Aguilar J, Lind C (1988) Distribution of DT diaphorase in the rat brain: biochemical and immunohistochemical studies. Neurosci 27:763–776

    Article  CAS  Google Scholar 

  • Senin U, Parnetti L, Barbagallo-Sangiorgi G, Bartorelli L, Bocola V, Capurso A, Cuzzupoli M, Denaro M, Marigliano V, Tammaro AE, Fioravanti M (1992) Idebenone in senile dementia of Alzheimer type: a multicentre study. Arch Gerontol Geriatr 15:249–260

    Article  CAS  Google Scholar 

  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100:1469–1479

    CAS  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    CAS  Google Scholar 

  • Siegel D, Ross D (2000) Immunodetection of NAD (P) H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic Biol Med 29:246–253

    Article  CAS  Google Scholar 

  • Stringer JL, Gaikwad A, Gonzales BN, Long DJ Jr, Marks LM, Jaiswal AK (2004) Presence and induction of the enzyme NAD (P) H: quinone oxidoreductase 1 in the central nervous system. J Comp Neurol 471:289–297

    Article  CAS  Google Scholar 

  • Suno M, Nagaoka A (1984a) Inhibition of lipid peroxidation by a novel compound, idebenone (CV-2619). Jpn J Pharmacol 35:196–198

    Article  CAS  Google Scholar 

  • Suno M, Nagaoka A (1984b) Inhibition of lipid peroxidation by a novel compound (CV-2619) in brain mitochondria and mode of action of the inhibition. Biochem Biophys Res Commun 125:1046–1052

    Article  CAS  Google Scholar 

  • Suno M, Nagaoka A (1989) Inhibition of lipid peroxidation by idebenone in brain mitochondria in the presence of succinate. Arch Gerontol Geriatr 8:291–297

    Article  CAS  Google Scholar 

  • Tai KK, Pham L, Truong DD (2011) Idebenone induces apoptotic cell death in the human dopaminergic neuroblastoma SHSY-5Y cells. Neurotox Res 20:321–328

    Article  CAS  Google Scholar 

  • Thal LJ, Grundman M, Berg J, Ernstrom K, Margolin R, Pfeiffer E, Weiner MF, Zamrini E, Thomas RG (2003) Idebenone treatment fails to slow cognitive decline in Alzheimer’s disease. Neurology 61:1498–1502

    Article  CAS  Google Scholar 

  • Torii H, Yoshida K, Kobayashi T, Tsukamoto T, Tanayama S (1985) Disposition of idebenone (CV-2619), a new cerebral metabolism improving agent, in rats and dogs. J Pharmacobiodyn 8:457–467

    Article  CAS  Google Scholar 

  • van Muiswinkel FL, de Vos RA, Bol JG, Andringa G, Jansen Steur EN, Ross D, Siegel D, Drukarch B (2004) Expression of NAD (P) H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging 25:1253–1262

    Article  Google Scholar 

  • Wang Y, Santa-Cruz K, DeCarli C, Johnson JA (2000) NAD (P) H:quinone oxidoreductase activity is increased in hippocampal pyramidal neurons of patients with Alzheimer’s disease. Neurobiol Aging 21:525–531

    Article  CAS  Google Scholar 

  • Weyer G, Babej-Dolle RM, Hadler D, Hofmann S, Herrmann WM (1997) A controlled study of 2 doses of idebenone in the treatment of Alzheimer’s disease. Neuropsychobiology 36:73–82

    Article  CAS  Google Scholar 

  • Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, Cortopassi G (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8:425–430

    Article  CAS  Google Scholar 

  • Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T (1999) Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 11:83–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from National Institutes of Health R01 NS085165 to B.M.P. and from Sigma Tau Pharmaceuticals and the M. Jane Matjasko Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Polster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, S., Polster, B.M. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier?. J Bioenerg Biomembr 47, 111–118 (2015). https://doi.org/10.1007/s10863-014-9571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9571-y

Keywords

Navigation