Journal of Bioenergetics and Biomembranes

, Volume 46, Issue 3, pp 229–241 | Cite as

An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F1F0 ATP synthases

  • Todd P. Silverstein


Recently the F0 portion of the bovine mitochondrial F1F0-ATP synthase was shown to contain eight ‘c’ subunits (n = 8). This surprised many in the field, as previously, the only other mitochondrial F0 (for yeast) was shown to have ten ‘c’ subunits. The metabolic implications of ‘c’ subunit copy number explored in this paper lead to several surprising conclusions: (1) Aerobically respiring E. coli (n = 10) and animal mitochondria (n = 8) both have very high F1F0 thermodynamic efficiencies of ≈90 % under typical conditions, whereas efficiency is only ≈65 % for chloroplasts (n = 14). Reasons for this difference, including the importance of transmembrane potential (∆Ψ) as a rotational catalyst, as opposed to an energy source, are discussed. (2) Maximum theoretical P/O ratios in animal mitochondria (n = 8) are calculated to be 2.73 ATP/NADH and 1.64 ATP/FADH2, yielding 34.5 ATP/glucose (assuming NADH import via the malate/aspartate shuttle). The experimentally measured values of 2.44 (±0.15), 1.47 (±0.13), and 31.3 (±1.5), respectively, are only about 10 % lower, suggesting very little energy depletion via transmembrane proton leakage. (3) Finally, the thermodynamic efficiency of oxidative phosphorylation is not lower than that of substrate level phosphorylation, as previously believed. The overall thermodynamic efficiencies of oxidative phosphorylation, glycolysis, and the citric acid cycle are ≈80 % in all three processes.


Bioenergetics Thermodynamics Oxidative phosphorylation Mitochondria Aerobic metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) The structure of F1 ATPase from bovine heart mitochondria determined at 2.8 Å resolution. Nature 370:621–628CrossRefGoogle Scholar
  2. Akhmedov D, Braun M, Mataki C, Park K-S, Pozzan T, Schoonjans K, Rorsman P, Wollheim CB, Wiederkehr A (2010) Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal cells. FASEB J 24:4613–4626CrossRefGoogle Scholar
  3. Arechaga I, Butler PJG, Walker JE (2002) Self-assembly of ATP synthase subunit c rings. FEBS Lett 515:189–193CrossRefGoogle Scholar
  4. Ballhausen B, Altendorf K, Deckers-Hebestreit G (2009) Constant c 10 ring stoichiometry in the E. coli ATP synthase analyzed by cross-linking. J Bacteriol 191:2400–2404CrossRefGoogle Scholar
  5. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196CrossRefGoogle Scholar
  6. Bot CT, Prodan C (2010) Quantifying the membrane potential during E. coli growth stages. Biophys Chem 146:133–137CrossRefGoogle Scholar
  7. Boyer PD (1993) The binding change mechanism for ATP synthase – some probabilities and possibilities. Biochim Biophys Acta 1140:215–250CrossRefGoogle Scholar
  8. Boyer PD (1997) The ATP synthase – a splendid molecular machine. Annu Rev Biochem 66:717–749CrossRefGoogle Scholar
  9. Branden M, Sanden T, Brzezinski P, Widengren J (2006) Localized proton microcircuits at the biologicl membrane-water interface. Proc Natl Acad Sci U S A 103:19766–19770CrossRefGoogle Scholar
  10. Cherepanov DA, Feniouk BA, Junge W, Mulkidjanian AY (2003) Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys J 85:1307–1316CrossRefGoogle Scholar
  11. Daum B, Kuhlbrandt W (2011) Electron tomography of plant thylakoid membranes. J Exp Bot 62:2393–2402CrossRefGoogle Scholar
  12. Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kühlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci U S A 108:14121–14126CrossRefGoogle Scholar
  13. Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühlbrandt W (2012) Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A 109:13602–13607CrossRefGoogle Scholar
  14. Duser MG, Zarrabi N, Cipriano DJ, Ernst S, Glick GD, Dunn SD, Borsch M (2009) 36° step size of proton-driven c-ring rotation in F0F1-ATP synthase. EMBO J 28:2689–2696CrossRefGoogle Scholar
  15. Ferguson SJ (2000) What dictates the size of a ring? Curr Biol 10:R804–808CrossRefGoogle Scholar
  16. Ferguson SJ (2010) ATP synthase: from sequence to ring size to the P/O ratio. Proc Natl Acad Sci U S A 107:16755–16756CrossRefGoogle Scholar
  17. Frey TG, Perkins GA, Ellisman MH (2006) Electron tomography of mem-brane-bound cellular organelles. Annu Rev Biophys Biomol Struct 35:199–224CrossRefGoogle Scholar
  18. Goodsell DS (1991) Inside a living cell. Trends Biochem Sci 16:203–206CrossRefGoogle Scholar
  19. Hauser M, Eichelmann H, Oja V, Heber U, Laisk A (1995) Stimulation by light of rapid pH regulation in the chloroplast stroma in vivo as lndicated by CO, solubilization in leaves. Plant Physiol 108:1059–1066Google Scholar
  20. Heberle J (2000) Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta 1458:135–147CrossRefGoogle Scholar
  21. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phohsphorylation. Biochim Biophys Acta 1706:1–11CrossRefGoogle Scholar
  22. Jang S-y, Kang HT, Hwang ES (2012) Nicotinamide-induced mitophagy event mediated by high NAD/NADH ratio, and SIRT1 protein activation. J Biol Chem 287:19304–19314CrossRefGoogle Scholar
  23. Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary F0F1-ATPase. Nature 459:364–370CrossRefGoogle Scholar
  24. Kadenbach B (2003) Intrinsic and extrinsic uncoupling gof oxidative phosphorylation. Biochim Biohys Acta 1604:77–94CrossRefGoogle Scholar
  25. Kaim G, Dimroth P (1999) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J 18:4118–4127CrossRefGoogle Scholar
  26. Khalifat N, Puff N, Bonneau S, Fournier J-B, Angelova MI (2008) Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys J 95:4924–4933CrossRefGoogle Scholar
  27. Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163CrossRefGoogle Scholar
  28. Krebstakies T, Aldag I, Altendorf K, Greie JC, Deckers-Hebestreit G (2008) The stoichiometry of subunit c of E. coli ATP synthase is independent of its rate of synthesis. Biochemistry 47:6907–6916CrossRefGoogle Scholar
  29. Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438CrossRefGoogle Scholar
  30. Lehninger AL (1965) The mitochondrion. Benjamin, NY, pp 105–120Google Scholar
  31. Lemasters JJ, Grunwald R, Emaus RK (1984) Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria. J Biol Chem 259:3058–3063Google Scholar
  32. Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725CrossRefGoogle Scholar
  33. Lodish HF (1999) Molecular cell biology. Scientific American Books, NYGoogle Scholar
  34. Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548CrossRefGoogle Scholar
  35. Mannella CA, Lederer WJ, Jafri MS (2013) The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol 62:51–57CrossRefGoogle Scholar
  36. Mathews CK, van Holde KE, Appling DR, Anthony-Cahill SJ (2013) Biochemistry, 4th edn. Pearson, Toronto, pp 649–654Google Scholar
  37. Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, Cook GM, Dimroth P, Bernhard B (2007) A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol Microbiol 65:1181–1192CrossRefGoogle Scholar
  38. Messer JI, Jackman MR, Willis WT (2004) Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am J Physiol Cell Physiol 286:C565–C572CrossRefGoogle Scholar
  39. Metelkin E, Demin O, Kovacs Z, Chinopoulos C (2009) Modeling of ATP-ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. FEBS J 276:6942–6955CrossRefGoogle Scholar
  40. Meyer Z, Tittingdorf JM, Rexroth S, Schafer E, Schlichting R, Giersch C et al (2004) The stoichiometry of the chloroplast ATP synthase oligomer III in C. reinhardtii is not affected by the metabolic state. Biochim Biophys Acta 1659:92–99CrossRefGoogle Scholar
  41. Minakami S, Yoshikawa H (1965) Thermodynamic considerations on erythrocyte glycolysis. Biochem Biophys Res Comm 18:345–349CrossRefGoogle Scholar
  42. Mitchell P, Moyle J (1969) Estimation of membrane potential and pH differences across the cristae membrane of rat liver mitochondria. Eur J Biochem 7:471–484CrossRefGoogle Scholar
  43. Moran LA, Horton HR, Scrimgeour KG, Perry MD (2012) Principles of biochemistry, 5th edn. Pearson, Boston, pp 433–435Google Scholar
  44. Mukherjee S, Warshel A (2012) Realistic simulations of the coupling between the protonmotive force and the mechanical rotation of the F0-ATPase. Proc Natl Acad Sci U S A 109:14876–14881CrossRefGoogle Scholar
  45. Muller DJ, Dencher NA, Meier T, Dimroth P, Suda K, Stahlberg H, Engel A, Seelert H, Matthey U (2001) ATP synthase: constrained stoichiometry of the transmembrane rotor. FEBS Lett 504:219–222CrossRefGoogle Scholar
  46. Murakami S, Packer L (1970) Protonation and chloroplast membrane structure. J Cell Biol 47:332–351CrossRefGoogle Scholar
  47. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefGoogle Scholar
  48. Nelson DL, Cox MM (2013) Lehninger principles of biochemistry, 6th edn. Freeman and Co, NY, pp 755–757Google Scholar
  49. Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic Press, Amsterdam, p 83Google Scholar
  50. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302CrossRefGoogle Scholar
  51. Orij R, Postmus J, Beek AT, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155:268–278CrossRefGoogle Scholar
  52. Perkins GA, Tjong J, Brown JM, Poquiz PH, Scott RT, Kolson DR, Ellisman MH, Spirou GA (2010) The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J Neurosci 30:1015–1026CrossRefGoogle Scholar
  53. Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Muller DJ, Dimroth P, Meier T (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J Bacteriol 189:5895–5902CrossRefGoogle Scholar
  54. Pogoryelov D, Yildiz O, Faraldo-Gomez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073CrossRefGoogle Scholar
  55. Pogoryelov D, Klyszejko AL, Krasnoselska GO, Heller E-M, Leone V, Langer JD, Vonck J, Muller DJ, Faraldo-Gomez JD, Meier T (2012) Engineering rotor ring stoichiometries in the ATP synthase Proc. Proc Natl Acad Sci U S A 109:E1599–E1608CrossRefGoogle Scholar
  56. Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE, Ambudkar SV, Tarasova N, Bates SE (2004) Mutational analysis of ABCG2: role of the GXXXG motif. Biochemistry 43:9448–9456CrossRefGoogle Scholar
  57. Porcelli AM, Ghelli A, Zann C, Pinton P, Rizzuto R, Rugolo M (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326:799–804CrossRefGoogle Scholar
  58. Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz O, Krulwich TA, Meier T (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci U S A 110:7874–7879CrossRefGoogle Scholar
  59. Riondet C, Cachon R, Wache Y, Alcarza G, Divies C (1997) Measurement of the intracellular pH in Escherichia coli with the internally conjugated fluorescent probe 5- (and 6-)carboxyfluorescein succinimidyl ester. Biotechnol Tech 11:735–738CrossRefGoogle Scholar
  60. Robinson SP, Giersch C (1987) Inorganic phosphate concentration in the stroma of isolated chloroplasts and its influence on photosynthesis. Aust J Plant Physiol 14:451–462CrossRefGoogle Scholar
  61. Rolfe DFS, Brand MD (1997) The physiological significance of proton leak in animal cells and tissues. Biosci Rep 17:9–16CrossRefGoogle Scholar
  62. Rottenberg H (1979) Non-equilibrium thermodynamics of energy conversion in bioenergetics. Biochim Biphys Acta 549:225–253CrossRefGoogle Scholar
  63. Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296:911–919CrossRefGoogle Scholar
  64. Schemidt RA, Qu J, Williams JR, Brusilow WSA (1998) Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of E. coli. J Bacteriol 180:3205–3208Google Scholar
  65. Senes A, Gerstein M, Engelman DM (2000) Structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation. J Mol Biol 296:921–936CrossRefGoogle Scholar
  66. Silverstein T (2005) The mitochondrial phosphate-to-oxygen ratio is not an integer. Biochem Mol Biol Educ 33:416–417CrossRefGoogle Scholar
  67. Silverstein TP et al (1993) Transmembrane measurements across bioenergetic membranes. Biochim Biophys Acta 1183:1–3CrossRefGoogle Scholar
  68. Soboll S, Stucki J (1985) Regulation of the degree of coupling of oxidative phosphorylation in intact rat liver. Biochim Biophys Acta 807:245–254CrossRefGoogle Scholar
  69. Staehlin LA, Arntzen CJ (1983) Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol 97:1327–1337CrossRefGoogle Scholar
  70. Steigmuller S, Turina P, Graber P (2008) The thermodynamic H+/ATP ratios of the H+-ATP-synthases from chloroplasts and E. coli. Proc Natl Acad Sci U S A 105:3745–3750CrossRefGoogle Scholar
  71. Stitt M, McC. Lilley R, Heldt HW (1982) Adenine nucleotide levels in the cytosol, chloroploasts, and mitochondria of wheat leaf protoplasts. Plant Physiol 70:971–977CrossRefGoogle Scholar
  72. Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705CrossRefGoogle Scholar
  73. Strauss M, Hofhaus G, Schroder RR, Kuhlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160CrossRefGoogle Scholar
  74. Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gomez JD, Mueller DM (2012) Structure of the c10 ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19:485–491CrossRefGoogle Scholar
  75. Toyabe S, Watanabe-Nakayama T, Okamoto T, Kudo S, Muneyuki E (2011) Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc Natl Acad Sci U S A 108:17951–17956CrossRefGoogle Scholar
  76. Tran QH, Unden G (1998) Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem 251:538–543CrossRefGoogle Scholar
  77. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344CrossRefGoogle Scholar
  78. Voet D, Voet JG (2004) Biochemistry, 3rd edn. J. Wiley and Sons, NY, p 807Google Scholar
  79. von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64CrossRefGoogle Scholar
  80. von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672CrossRefGoogle Scholar
  81. Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE (2010) Bioenergetic cost of making an adeonsine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827CrossRefGoogle Scholar
  82. Wikstrom M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 109:4431–4436CrossRefGoogle Scholar
  83. Zala D, Hinckelmann M-V, Yu H, da Cunha MML, Liot G, Cordelieres FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491CrossRefGoogle Scholar
  84. Zilberstein D, Agmon V, Schuldiner S, Padan E (1984) Escherichia coli intracellular pH, membrane potential, and cell growth. J Bacteriol 158:246–252Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryWillamette UniversitySalemUSA

Personalised recommendations