Journal of Bioenergetics and Biomembranes

, Volume 45, Issue 4, pp 409–419 | Cite as

Dipyridamole-related enhancement of gap junction coupling in the GM-7373 aortic endothelial cells correlates with an increase in the amount of connexin 43 mRNA and protein as well as gap junction plaques

  • Daniela Begandt
  • Almke Bader
  • Linda Gerhard
  • Julia Lindner
  • Lutz Dreyer
  • Barbara Schlingmann
  • Anaclet NgezahayoEmail author


Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.


Dipyridamole Gap junction cAMP Endothelial cells Connexin 43 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson MM, Lampe PD, Lin HH, Kollander R, Li XR, Kiang DT (1995) Cyclic AMP modifies the cellular distribution of connexin43 and induces a persistent increase in the junctional permeability of mouse mammary tumor cells. J Cell Sci 108(Pt 9):3079–3090Google Scholar
  2. Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998) Rapid turnover of connexin43 in the adult rat heart. Circ Res 83(6):629–635CrossRefGoogle Scholar
  3. Begandt D, Bintig W, Oberheide K, Schlie S, Ngezahayo A (2010) Dipyridamole increases gap junction coupling in bovine GM-7373 aortic endothelial cells by a cAMP-protein kinase A dependent pathway. J Bioenerg Biomembr 42(1):79–84CrossRefGoogle Scholar
  4. Begandt D, Bader A, Dreyer L, Eisert N, Reeck T, Ngezahayo A (2013) Biphasic increase of gap junction coupling induced by dipyridamole in the rat aortic A-10 vascular smooth muscle cell line. J Cell Commun Signal 7(2):151–161Google Scholar
  5. Berthoud VM, Minogue PJ, Guo J, Williamson EK, Xu X, Ebihara L, Beyer EC (2003) Loss of function and impaired degradation of a cataract-associated mutant connexin50. Eur J Cell Biol 82(5):209–221CrossRefGoogle Scholar
  6. Bintig W, Begandt D, Schlingmann B, Gerhard L, Pangalos M, Dreyer L, Hohnjec N, Couraud PO, Romero IA, Weksler BB, Ngezahayo A (2011) Purine receptors and Ca(2+) signalling in the human blood–brain barrier endothelial cell line hCMEC/D3. Purinergic SignalGoogle Scholar
  7. Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238(1):1–27CrossRefGoogle Scholar
  8. Chadjichristos CE, Kwak BR (2007) Connexins: new genes in atherosclerosis. Ann Med 39(6):402–411CrossRefGoogle Scholar
  9. Chanson M, White MM, Garber SS (1996) cAMP promotes gap junctional coupling in T84 cells. Am J Physiol 271(2 Pt 1):C533–C539Google Scholar
  10. Civitelli R, Ziambaras K, Warlow PM, Lecanda F, Nelson T, Harley J, Atal N, Beyer EC, Steinberg TH (1998) Regulation of connexin43 expression and function by prostaglandin E2 (PGE2) and parathyroid hormone (PTH) in osteoblastic cells. J Cell Biochem 68(1):8–21CrossRefGoogle Scholar
  11. Cooper CD, Lampe PD (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277(47):44962–44968CrossRefGoogle Scholar
  12. Cruciani V, Mikalsen SO (2002) Connexins, gap junctional intercellular communication and kinases. Biol Cell 94(7–8):433–443CrossRefGoogle Scholar
  13. Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Loewenthal A (1996) European stroke prevention study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci 143(1–2):1–13CrossRefGoogle Scholar
  14. Eisert WG (2006) Dipyridamole. In: Michelson AD (ed) Platelets. Academic, Amsterdam, pp 1165–1179Google Scholar
  15. ESPRIT Study Group, Halkes PH, van Gijn J, Kappelle LJ, Koudstaal PJ, Algra A (2006) Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. 367, 9523Google Scholar
  16. Faucheux N, Nagel MD (2002) Cyclic AMP-dependent aggregation of Swiss 3T3 cells on a cellulose substratum (Cuprophan) and decreased cell membrane Rho A. Biomaterials 23(11):2295–2301CrossRefGoogle Scholar
  17. Figueroa XF, Isakson BE, Duling BR (2004) Connexins: gaps in our knowledge of vascular function. Physiology (Bethesda) 19:277–284CrossRefGoogle Scholar
  18. Green CR, Nicholson LF (2008) Interrupting the inflammatory cycle in chronic diseases-do gap junctions provide the answer? Cell Biol Int 32(12):1578–1583CrossRefGoogle Scholar
  19. Guo S, Stins M, Ning M, Lo EH (2010) Amelioration of inflammation and cytotoxicity by dipyridamole in brain endothelial cells. Cerebrovasc Dis 30(3):290–296CrossRefGoogle Scholar
  20. Haefliger JA, Meda P (2000) Chronic hypertension alters the expression of Cx43 in cardiovascular muscle cells. Braz J Med Biol Res 33(4):431–438CrossRefGoogle Scholar
  21. Haefliger JA, Meda P, Formenton A, Wiesel P, Zanchi A, Brunner HR, Nicod P, Hayoz D (1999) Aortic connexin43 is decreased during hypertension induced by inhibition of nitric oxide synthase. Arterioscler Thromb Vasc Biol 19(7):1615–1622CrossRefGoogle Scholar
  22. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34(3):325–472CrossRefGoogle Scholar
  23. Hoffmann A, Gloe T, Pohl U, Zahler S (2003) Nitric oxide enhances de novo formation of endothelial gap junctions. Cardiovasc Res 60(2):421–430CrossRefGoogle Scholar
  24. Johnstone S, Isakson B, Locke D (2009) Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278:69–118CrossRefGoogle Scholar
  25. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84(3):381–388CrossRefGoogle Scholar
  26. Lampe PD, Cooper CD, King TJ, Burt JM (2006) Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119(Pt 16):3435–3442CrossRefGoogle Scholar
  27. Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61(4):829–913Google Scholar
  28. Maza J, Das Sarma J, Koval M (2005) Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum. J Biol Chem 280(22):21115–21121CrossRefGoogle Scholar
  29. Mehta PP, Yamamoto M, Rose B (1992) Transcription of the gene for the gap junctional protein connexin43 and expression of functional cell-to-cell channels are regulated by cAMP. Mol Biol Cell 3(8):839–850Google Scholar
  30. Molina-Arcas M, Casado FJ, Pastor-Anglada M (2009) Nucleoside transporter proteins. Curr Vasc Pharmacol 7(4):426–434CrossRefGoogle Scholar
  31. Murray SA, Shah US (1998) Modulation of adrenal gap junction expression. Horm Metab Res 30(6–7):426–431CrossRefGoogle Scholar
  32. Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115(5):1357–1374CrossRefGoogle Scholar
  33. Olk S, Zoidl G, Dermietzel R (2009) Connexins, cell motility, and the cytoskeleton. Cell Motil Cytoskeleton 66(11):1000–1016CrossRefGoogle Scholar
  34. Podgorska M, Kocbuch K, Pawelczyk T (2005) Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochim Pol 52(4):749–758Google Scholar
  35. Saffitz JE, Laing JG, Yamada KA (2000) Connexin expression and turnover. Circ Res 86(7):723–728CrossRefGoogle Scholar
  36. Salameh A, Krautblatter S, Karl S, Blanke K, Gomez DR, Dhein S, Pfeiffer D, Janousek J (2009) The signal transduction cascade regulating the expression of the gap junction protein connexin43 by beta-adrenoceptors. Br J Pharmacol 158(1):198–208CrossRefGoogle Scholar
  37. Sands WA, Palmer TM (2008) Regulating gene transcription in response to cyclic AMP elevation. Cell Signal 20(3):460–466CrossRefGoogle Scholar
  38. Solan JL, Lampe PD (2005) Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711(2):154–163CrossRefGoogle Scholar
  39. Solan JL, Lampe PD (2007) Key connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217(1–3):35–41Google Scholar
  40. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272CrossRefGoogle Scholar
  41. Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N (2005) Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97(7):655–662CrossRefGoogle Scholar
  42. Sosinsky GE, Solan JL, Gaietta GM, Ngan L, Lee GJ, Mackey MR, Lampe PD (2007) The C-terminus of connexin43 adopts different conformations in the Golgi and gap junction as detected with structure-specific antibodies. Biochem J 408(3):375–385CrossRefGoogle Scholar
  43. Trosko JE, Chang CC, Wilson MR, Upham B, Hayashi T, Wade M (2000) Gap junctions and the regulation of cellular functions of stem cells during development and differentiation. Methods 20(2):245–264CrossRefGoogle Scholar
  44. van Rijen HV, van Veen TA, Hermans MM, Jongsma HJ (2000) Human connexin40 gap junction channels are modulated by cAMP. Cardiovasc Res 45(4):941–951CrossRefGoogle Scholar
  45. Wang Y, Rose B (1995) Clustering of Cx43 cell-to-cell channels into gap junction plaques: regulation by cAMP and microfilaments. J Cell Sci 108(Pt 11):3501–3508Google Scholar
  46. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874Google Scholar
  47. Yogo K, Ogawa T, Akiyama M, Ishida N, Takeya T (2002) Identification and functional analysis of novel phosphorylation sites in Cx43 in rat primary granulosa cells. FEBS Lett 531(2):132–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniela Begandt
    • 1
  • Almke Bader
    • 1
  • Linda Gerhard
    • 1
  • Julia Lindner
    • 1
  • Lutz Dreyer
    • 1
    • 3
  • Barbara Schlingmann
    • 1
    • 2
  • Anaclet Ngezahayo
    • 1
    • 2
    Email author
  1. 1.Institute of BiophysicsLeibniz University HannoverHannoverGermany
  2. 2.Center for Systems Neuroscience HannoverUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
  3. 3.Institute for Multiphase ProcessesLeibniz University HannoverHannoverGermany

Personalised recommendations