Journal of Bioenergetics and Biomembranes

, Volume 45, Issue 1–2, pp 101–109 | Cite as

Early alterations in mitochondrial reserve capacity; a means to predict subsequent photoreceptor cell death

Article

Abstract

Although genetic and environmental factors contribute to neurodegenerative disease, the underlying etiology common to many diseases might be based on metabolic demand. Mitochondria are the main producer of ATP, but are also the major source of reactive oxygen species. Under normal conditions, these oxidants are neutralized; however, under environmental insult or genetic susceptibility conditions, oxidative stress may exceed cellular antioxidant capacities, leading to degeneration. We tested the hypothesis that loss in mitochondrial reserve capacity plays a causative role in neuronal degeneration and chose a cone photoreceptor cell line as our model. 661W cells were exposed to agents that mimic oxidant stress or calcium overload. Real-time changes in cellular metabolism were assessed using the multi-well Seahorse Biosciences XF24 analyzer that measures oxygen consumption (OCR) and extracellular acidification rates (ECAR). Cellular stress resulted in an early loss of mitochondrial reserve capacity, without affecting basal respiration; and ECAR was increased, representing a compensatory shift of ATP productions toward glycolysis. The degree of change in energy metabolism was correlated with the amount of subsequent cell death 24-hours post-treatment, the concentration-dependent loss in mitochondrial reserve capacity correlated with the number of live cells. Our data suggested first, that loss in mitochondrial reserve capacity is a major contributor in disease pathogenesis; and second, that the XF24 assay might represent a useful surrogate assay amenable to the screening of agents that protect against loss of mitochondrial reserve capacity. In future experiments, we will explore these concepts for the development of neuroprotective agents.

Keywords

Mitochondrial respiration Cell death Photoreceptors Retinitis pigmentosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta ML, Fletcher EL, Azizoglu S, Foster LE, Farber DB, Kalloniatis M (2005) Mol Vis 11:717–728Google Scholar
  2. Ames A 3rd, Li YY, Heher EC, Kimble CR (1992) J Neurosci 12:840–853Google Scholar
  3. Balaban RS, Nemoto S, Finkel T (2005) Cell 120:483–495CrossRefGoogle Scholar
  4. Bandy B, Davison AJ (1990) Free Radic Biol Med 8:523–539CrossRefGoogle Scholar
  5. Beckman KB, Ames BN (1998) Physiol Rev 78:547–581Google Scholar
  6. Beeson CC, Beeson GC, Schnellmann RG (2010) Anal Biochem 404:75–81CrossRefGoogle Scholar
  7. Brand MD (2000) Exp Gerontol 35:811–820CrossRefGoogle Scholar
  8. Brand MD, Nicholls DG (2011) Biochem J 435:297–312CrossRefGoogle Scholar
  9. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Free Radic Biol Med 37:755–767CrossRefGoogle Scholar
  10. Cocheme HM, Murphy MP (2008) J Biol Chem 283:1786–1798CrossRefGoogle Scholar
  11. Cruickshanks KJ, Klein R, Klein BE (1993) Arch Ophthalmol 111:514–518CrossRefGoogle Scholar
  12. de Grey AD (2006) Free Radic Res 40:1244–1249CrossRefGoogle Scholar
  13. Dranka BP, Hill BG, Darley-Usmar VM (2010) Free Radical Biol Med 48:905–914CrossRefGoogle Scholar
  14. Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, Landar A, Darley-Usmar VM (2011) Free Radical Biol Med 51:1621–1635CrossRefGoogle Scholar
  15. Finnegan S, Mackey AM, Cotter TG (2010) Eur J Neurosci 32:322–334CrossRefGoogle Scholar
  16. Fliesler SJ, Richards MJ, Miller CY, McKay S, Winkler BS (1997) Exp Eye Res 64:683–692CrossRefGoogle Scholar
  17. Fox DA, Poblenz AT, He L (1999) Ann N Y Acad Sci 893:282–285CrossRefGoogle Scholar
  18. Fukushima T, Tanaka K, Lim H, Moriyama M (2002) Environ Health Prev Med 7:89–94CrossRefGoogle Scholar
  19. Gandhi V, Estey E, Du M, Nowak B, Keating MJ, Plunkett W (1995) Clin Cancer Res 1:169–178Google Scholar
  20. Grimm C, Wenzel A, Hafezi F, Yu S, Redmond TM, Reme CE (2000) Nat Genet 25:63–66CrossRefGoogle Scholar
  21. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997) Proc Natl Acad Sci USA 94:3064–3069CrossRefGoogle Scholar
  22. Hassan HM (1984) Methods Enzymol 105:523–532CrossRefGoogle Scholar
  23. Hoch FL (1992) Biochim Biophys Acta 1113:71–133CrossRefGoogle Scholar
  24. Jarrett SG, Lin H, Godley BF, Boulton ME (2008) Prog Retin Eye Res 27:596–607CrossRefGoogle Scholar
  25. Koutalos Y, Yau KW (1996) Trends Neurosci 19:73–81CrossRefGoogle Scholar
  26. Krishnamoorthy RR, Crawford MJ, Chaturvedi MM, Jain SK, Aggarwal BB, Al-Ubaidi MR, Agarwal N (1999) J Biol Chem 274:3734–3743CrossRefGoogle Scholar
  27. Linsenmeier RA, Braun RD (1992) J Gen Physiol 99:177–197CrossRefGoogle Scholar
  28. Lipton SA, Rasmussen H, Dowling JE (1977) J Gen Physiol 70:771–791CrossRefGoogle Scholar
  29. Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B (2006) Exp Eye Res 83:380–389CrossRefGoogle Scholar
  30. Lynch RM, Balaban RS (1987) Am J Physiol 252:C225–C231Google Scholar
  31. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Ann Neurol 34:609–616CrossRefGoogle Scholar
  32. Medrano CJ, Fox DA (1995) Exp Eye Res 61:273–284CrossRefGoogle Scholar
  33. Miquel J (1992) Mutat Res 275:209–216CrossRefGoogle Scholar
  34. Nichols WW, Epstein BJ (2009) Curr Pharm Des 15:304–320CrossRefGoogle Scholar
  35. Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) Curr Biol 18:1917–1921CrossRefGoogle Scholar
  36. Redinbaugh MG, Turley RB (1986) Anal Biochem 153:267–271CrossRefGoogle Scholar
  37. Richter C (1988) FEBS Lett 241:1–5CrossRefGoogle Scholar
  38. Sharma AK, Rohrer B (2004) J Biol Chem 279:35564–35572CrossRefGoogle Scholar
  39. Sharma AK, Rohrer B (2007) Curr Eye Res 32:259–269CrossRefGoogle Scholar
  40. Shigenaga MK, Hagen TM, Ames BN (1994) Proc Natl Acad Sci USA 91:10771–10778CrossRefGoogle Scholar
  41. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85CrossRefGoogle Scholar
  42. Stackley KD, Beeson CC, Rahn JJ, Chan SS (2011) PLoS One 6:e25652CrossRefGoogle Scholar
  43. Tan E, Ding XQ, Saadi A, Agarwal N, Naash MI, Al-Ubaidi MR (2004) Invest Ophthalmol Vis Sci 45:764–768CrossRefGoogle Scholar
  44. Tuszynski GP, Murphy A (1990) Anal Biochem 184:189–191CrossRefGoogle Scholar
  45. Usachev Y, Verkhratsky A (1995) Cell Calcium 17:197–206CrossRefGoogle Scholar
  46. Winkler BS, Arnold MJ, Brassell MA, Sliter DR (1997) Invest Ophthalmol Vis Sci 38:62–71Google Scholar
  47. Winkler BS, Arnold MJ, Brassell MA, Puro DG (2000) Invest Ophthalmol Vis Sci 41:3183–3190Google Scholar
  48. Winkler BS, Sauer MW, Starnes CA (2003) Exp Eye Res 76:715–723CrossRefGoogle Scholar
  49. Winkler BS, Sauer MW, Starnes CA (2004a) J Neurochem 89:514–525CrossRefGoogle Scholar
  50. Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC (2004b) Neurochem Int 45:311–320CrossRefGoogle Scholar
  51. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Am J Physiol Cell Physiol 292:C125–C136CrossRefGoogle Scholar
  52. Wu S-B, Wei Y-H (2012) Biochim Biophys Acta 1822:233–247CrossRefGoogle Scholar
  53. Yarfitz S, Hurley JB (1994) J Biol Chem 269:14329–14332Google Scholar
  54. Yoshida Y, Singh I, Darby CP (1992) Acta Neurol Scand 85:191–196CrossRefGoogle Scholar
  55. Zglinicki Tv (2003) Aging at the molecular level. Kluwer, DordrechtGoogle Scholar
  56. Zhang X, Feng Q, Cote RH (2005) Invest Ophthalmol Vis Sci 46:3060–3066CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Departments of OphthalmologyMedical University of South CarolinaCharlestonUSA
  2. 2.Departments of Pharmaceutical SciencesMedical University of South CarolinaCharlestonUSA
  3. 3.Departments of Research ServiceRalph H Johnson VA Medical CenterCharlestonUSA
  4. 4.College of Pharmacy/Pharmaceutical & Biomedical SciencesMedical University of South CarolinaCharlestonUSA

Personalised recommendations