Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 44, Issue 3, pp 309–315 | Cite as

Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves

  • Zdeněk Drahota
  • René Endlicher
  • Pavla Staňková
  • David Rychtrmoc
  • Marie Milerová
  • Zuzana ČervinkováEmail author
Article

Abstract

We describe a new method for the analysis of mitochondrial swelling curves. Using classical swelling curves, only the maximum extent of the swelling can be calculated in a numerical form. However, taking the derivative of the classical swelling curves enables the evaluation of two additional parameters of the swelling process in a numerical form, namely, the maximum swelling rate after the addition of the swelling inducer (as dA520/10 s) and the time (in sec) at which the maximum swelling rate after the addition of the swelling inducer is obtained. The use of these three parameters enables the better characterization of the swelling process as demonstrated by the evaluation of calcium and phosphate interactions in the opening of the mitochondrial permeability transition pore and by the characterization of the peroxide potentiating action.

Keywords

Mitochondrial swelling Mitochondrial permeability transition pore Calcium, phosphate and peroxide interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabó I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939Google Scholar
  2. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  4. Broekemeier KM, Carpenter-Deyo L, Reed DJ, Pfeiffer DR (1992) Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress. FEBS Lett 304:192–194CrossRefGoogle Scholar
  5. Bustamante E, Soper JW, Pedersen PL (1977) A high-yield preparative method for isolation of rat liver mitochondria. Anal Biochem 80:401–408CrossRefGoogle Scholar
  6. Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797:595–606CrossRefGoogle Scholar
  7. Castilho RF, Kowaltowski AJ, Vercesi AE (1998) 3,5,3′-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Arch Biochem Biophys 354:151–157CrossRefGoogle Scholar
  8. Cossarizza A, Ceccarelli D, Masini A (1996) Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Exp Cell Res 222:84–94CrossRefGoogle Scholar
  9. Crofts AR, Chappel JB (1965) Calcium ion accumulation and volume changes of isolated liver mitochondria: reversal of calcium ion-induced swelling. Biochem J 95:387–392Google Scholar
  10. Crompton M, Costi A (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178:489–501CrossRefGoogle Scholar
  11. Crompton M, Costi A, Hayat L (1987) Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem 245:915–918Google Scholar
  12. Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360Google Scholar
  13. Drahota Z, Carafoli E, Rossi CS, Gamble RL, Lehninger AL (1965) The steady state maintenance of accumulated Ca2+ in rat liver mitochondria. J Biol Chem 240:2712–2720Google Scholar
  14. Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J Biol Chem 273:12662–12668CrossRefGoogle Scholar
  15. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27:583–596CrossRefGoogle Scholar
  16. Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD (2003) In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal Biochem 313:46–52CrossRefGoogle Scholar
  17. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786Google Scholar
  18. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831CrossRefGoogle Scholar
  19. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166CrossRefGoogle Scholar
  20. Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467CrossRefGoogle Scholar
  21. Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459CrossRefGoogle Scholar
  22. Kim JS, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 290:H2024–H2034CrossRefGoogle Scholar
  23. Mather M, Rottenberg H (2000) Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun 273:603–608CrossRefGoogle Scholar
  24. Milerova M, Charvatova Z, Skarka L, Ostadalova I, Drahota Z, Fialova M, Ostadal B (2010) Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 335:147–153CrossRefGoogle Scholar
  25. Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292:C708–C718CrossRefGoogle Scholar
  26. Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343CrossRefGoogle Scholar
  27. Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798Google Scholar
  28. Petronilli V, Cola C, Massari S, Colonna R, Bernardi P (1993) Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem 268:21939–21945Google Scholar
  29. Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50:222–233CrossRefGoogle Scholar
  30. Ricchelli F, Dabbeni-Sala F, Petronilli V, Bernardi P, Hopkins B, Bova S (2005) Species-specific modulation of the mitochondrial permeability transition by norbormide. Biochim Biophys Acta 1708:178–186CrossRefGoogle Scholar
  31. Walter L, Nogueira V, Leverve X, Heitz MP, Bernardi P, Fontaine E (2000) Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J Biol Chem 275:29521–29527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zdeněk Drahota
    • 1
    • 2
  • René Endlicher
    • 2
    • 3
  • Pavla Staňková
    • 2
  • David Rychtrmoc
    • 2
  • Marie Milerová
    • 4
  • Zuzana Červinková
    • 2
    Email author
  1. 1.Institute of Physiology and Center for Applied GenomicsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of PhysiologyCharles University in Prague, Faculty of Medicine in Hradec KrálovéHradec KrálovéCzech Republic
  3. 3.Department of Anatomy Charles University in PragueFaculty of Medicine in Hradec KrálovéHradec KrálovéCzech Republic
  4. 4.Institute of Physiology and Center for Cardiovascular ResearchAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations