Journal of Bioenergetics and Biomembranes

, Volume 44, Issue 2, pp 243–252 | Cite as

Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential

  • Virginia Vanasco
  • Natalia D. Magnani
  • María Cecilia Cimolai
  • Laura B. Valdez
  • Pablo Evelson
  • Alberto Boveris
  • Silvia AlvarezEmail author


Acute endotoxemia (LPS, 10 mg/kg ip, Sprague Dawley rats, 45 days old, 180 g) decreased the O2 consumption of rat heart (1 mm3 tissue cubes) by 33% (from 4.69 to 3.11 μmol O2/min. g tissue). Mitochondrial O2 consumption and complex I activity were also decreased by 27% and 29%, respectively. Impaired respiration was associated to decreased ATP synthesis (from 417 to 168 nmol/min. mg protein) and ATP content (from 5.40 to 4.18 nmol ATP/mg protein), without affecting mitochondrial membrane potential. This scenario is accompanied by an increased production of O 2 ●− and H2O2 due to complex I inhibition. The increased NO production, as shown by 38% increased mtNOS biochemical activity and 31% increased mtNOS functional activity, is expected to fuel an increased ONOO generation that is considered relevant in terms of the biochemical mechanism. Heart mitochondrial bioenergetic dysfunction with decreased O2 uptake, ATP production and contents may indicate that preservation of mitochondrial function will prevent heart failure in endotoxemia.


ATP Bioenergetics Endotoxemia LPS Mitochondrial function Rat heart 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez S, Boveris A (2004) Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radic Biol Med 37(9):1472–1478CrossRefGoogle Scholar
  2. Antunes F, Boveris A, Cadenas E (2007) On the biologic role of the reaction of NO with oxidized cytochrome c oxidase. Antioxid Redox Signal 9(10):1569–1579CrossRefGoogle Scholar
  3. Azzi A, Montecucco C, Richter C (1975) The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65(2):597–603CrossRefGoogle Scholar
  4. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87(4):1620–1624CrossRefGoogle Scholar
  5. Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364(6438):584CrossRefGoogle Scholar
  6. Bornhovd C, Vogel F, Neupert W, Reichert AS (2006) Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. J Biol Chem 281(20):13990–13998CrossRefGoogle Scholar
  7. Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435CrossRefGoogle Scholar
  8. Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54(3):311–314CrossRefGoogle Scholar
  9. Boveris A, Costa LE, Cadenas E, Poderoso JJ (1999) Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide synthase. Methods Enzymol 301:188–198CrossRefGoogle Scholar
  10. Boveris A, Alvarez S, Navarro A (2002a) The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic Biol Med 33(9):1186–1193CrossRefGoogle Scholar
  11. Boveris A, Arnaiz SL, Bustamante J, Alvarez S, Valdez L, Boveris AD et al (2002b) Pharmacological regulation of mitochondrial nitric oxide synthase. Methods Enzymol 359:328–339CrossRefGoogle Scholar
  12. Boveris A, Valdez LB, Alvarez S, Zaobornyj T, Boveris AD, Navarro A (2003) Kidney mitochondrial nitric oxide synthase. Antioxid Redox Signal 5(3):265–271CrossRefGoogle Scholar
  13. Brandes RP, Koddenberg G, Gwinner W, Kim D, Kruse HJ, Busse R et al (1999) Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia. Hypertension 33(5):1243–1249Google Scholar
  14. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360(9328):219–223CrossRefGoogle Scholar
  15. Cadenas E, Boveris A (1980) Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochem J 188(1):31–37Google Scholar
  16. Callahan LA, Supinski GS (2005) Downregulation of diaphragm electron transport chain and glycolytic enzyme gene expression in sepsis. J Appl Physiol 99(3):1120–1126CrossRefGoogle Scholar
  17. Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M et al (2010) Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 182(6):745–751CrossRefGoogle Scholar
  18. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605Google Scholar
  19. Cleeter MW, Cooper JM, Schapira AH (2001) Nitric oxide enhances MPP(+) inhibition of complex I. FEBS Lett 504(1–2):50–52CrossRefGoogle Scholar
  20. Crouser ED, Julian MW, Huff JE, Joshi MS, Bauer JA, Gadd ME et al (2004) Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia. Crit Care Med 32(2):478–488CrossRefGoogle Scholar
  21. Dionisi O, Galeotti T, Terranova T, Azzi A (1975) Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim Biophys Acta 403(2):292–300Google Scholar
  22. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850(3):436–448CrossRefGoogle Scholar
  23. Escames G, Lopez LC, Ortiz F, Lopez A, Garcia JA, Ros E et al (2007) Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J 274(8):2135–2147CrossRefGoogle Scholar
  24. Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6(6):491–499CrossRefGoogle Scholar
  25. Franco MC, Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM et al (2006) Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem 281(8):4779–4786CrossRefGoogle Scholar
  26. Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S (2009) Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J Biol Chem 284(52):36055–36061CrossRefGoogle Scholar
  27. Ganster RW, Geller DA (2000) Molecular regulation of inducible nitric oxide synthase. In: Ignarro L (ed) Nitric oxide: biology and pathobiology (pp. 129–156). Academic PressGoogle Scholar
  28. Lam PY, Yin F, Hamilton RT, Boveris A, Cadenas E (2009) Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production. Free Radic Res 43(5):431–439CrossRefGoogle Scholar
  29. Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273(4):2015–2023CrossRefGoogle Scholar
  30. Lores-Arnaiz S, D’Amico G, Czerniczyniec A, Bustamante J, Boveris A (2004) Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys 430(2):170–177CrossRefGoogle Scholar
  31. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102(5):369–392CrossRefGoogle Scholar
  32. Navarro A, Boveris A, Bandez MJ, Sanchez-Pino MJ, Gomez C, Muntane G et al (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46(12):1574–1580CrossRefGoogle Scholar
  33. Navarro A, Bandez MJ, Gomez C, Repetto MG, Boveris A (2010) Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J Bioenerg Biomembr 42(5):405–412CrossRefGoogle Scholar
  34. Parihar MS, Parihar A, Villamena FA, Vaccaro PS, Ghafourifar P (2008) Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative. Biochem Biophys Res Commun 367(4):761–767CrossRefGoogle Scholar
  35. Poderoso JJ, Fernandez S, Carreras MC, Tchercanski D, Acevedo C, Rubio M et al (1994) Liver oxygen uptake dependence and mitochondrial function in septic rats. Circ Shock 44(4):175–182Google Scholar
  36. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92CrossRefGoogle Scholar
  37. Protti A, Singer M (2007) Strategies to modulate cellular energetic metabolism during sepsis. In: Novartis Foundation (ed) Sepsis: new insights, new therapies (pp. 7–20) Wiley & sons, Ltd.CrossRefGoogle Scholar
  38. Reynolds CM, Suliman HB, Hollingsworth JW, Welty-Wolf KE, Carraway MS, Piantadosi CA (2009) Nitric oxide synthase-2 induction optimizes cardiac mitochondrial biogenesis after endotoxemia. Free Radic Biol Med 46(5):564–572CrossRefGoogle Scholar
  39. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477CrossRefGoogle Scholar
  40. Schafer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281(22):15370–15375CrossRefGoogle Scholar
  41. Stadler K, Bonini MG, Dallas S, Jiang J, Radi R, Mason RP et al (2008) Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med 45(6):866–874CrossRefGoogle Scholar
  42. Svistunenko DA, Davies N, Brealey D, Singer M, Cooper CE (2006) Mitochondrial dysfunction in patients with severe sepsis: an EPR interrogation of individual respiratory chain components. Biochim Biophys Acta 1757(4):262–272CrossRefGoogle Scholar
  43. Szabó C (2000) Pathophysiological roles of nitric oxide in inflammation (Nitric Oxide: Biology and Pathobiology). Academic, San DiegoGoogle Scholar
  44. Valdez LB, Zaobornyj T, Boveris A (2005) Functional activity of mitochondrial nitric oxide synthase. Methods Enzymol 396:444–455CrossRefGoogle Scholar
  45. Valdez LB, Zaobornyj T, Boveris A (2006) Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta 1757(3):166–172CrossRefGoogle Scholar
  46. Vanasco V, Cimolai MC, Evelson P, Alvarez S (2008) The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radic Res 42(9):815–823CrossRefGoogle Scholar
  47. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813(7):1360–1372CrossRefGoogle Scholar
  48. Villani G & Attardi G (2007) Polarographic assay of respiratory chain complex activity. In: Pon LA & Schon EA (eds) Methods in cell biology: mitochondria (2nd ed., Vol. 80, pp. 121–134). ElsevierGoogle Scholar
  49. Vivez-Bauza C, Yang L & Manfredi G (2007) Assay of mitochondrial ATP synthesis in animal cells and tissues. In: PLA. & S. E. A. (eds) Methods in cell biology: mitochondria (2nd ed., Vol. 80, pp. 155–171). ElsevierGoogle Scholar
  50. Vonck J, Schafer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793(1):117–124CrossRefGoogle Scholar
  51. Wang HJ, Pan YX, Wang WZ, Zucker IH, Wang W (2009) NADPH oxidase-derived reactive oxygen species in skeletal muscle modulates the exercise pressor reflex. J Appl Physiol 107(2):450–459CrossRefGoogle Scholar
  52. Webster HL, Williams JT (1964) The preparation and characterization of subcellular fractions of rat myocardium. Exp Cell Res 35:449–463CrossRefGoogle Scholar
  53. Wu F, Tyml K, Wilson JX (2008) iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol 217(1):207–214CrossRefGoogle Scholar
  54. Zapelini PH, Rezin GT, Cardoso MR, Ritter C, Klamt F, Moreira JC et al (2008) Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal model. Mitochondrion 8(3):211–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Virginia Vanasco
    • 1
  • Natalia D. Magnani
    • 1
  • María Cecilia Cimolai
    • 1
  • Laura B. Valdez
    • 1
  • Pablo Evelson
    • 1
  • Alberto Boveris
    • 1
  • Silvia Alvarez
    • 1
    Email author
  1. 1.Laboratory of Free Radical Biology, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations