Journal of Bioenergetics and Biomembranes

, Volume 44, Issue 1, pp 233–241 | Cite as

Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera

  • Akbar S. MD.
  • H. C. Sharma
  • Jayalakshmi S. K.
  • Sreeramulu K


The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.


Helicoverpa armigera Mitochondria Respiration Salicylic acid Jasmonic acid Induced resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alverez ME (2000) Plant Mol Biol 44:429–442CrossRefGoogle Scholar
  2. Arimura GI, Kost C, Boland W (2005) Biochim Biophys Acta 1734:91–111Google Scholar
  3. Armes NJ, Jadhav DR, Bond GS, King ABS (1992) Pestic Sci 34:355–364CrossRefGoogle Scholar
  4. Baginski ES, Foa PP, Zak B (1967) Clin Chem Acta 15:155–161CrossRefGoogle Scholar
  5. Battaglia V, Salvi M, Toninello A (2005) J Biol Chem 280:33864–33872CrossRefGoogle Scholar
  6. Bi JL, Murphy JB, Felton GW (1997) J Chem Ecol 23:1805–1818CrossRefGoogle Scholar
  7. Biban C, Tassani V, Toninello A, Siliprandi D, Siliprandi N (1995) Biochem Pharmacol 50:497–500CrossRefGoogle Scholar
  8. Chamberlin ME (2004) Am J Physiol Regul Integr Comp Physiol 287:314–321CrossRefGoogle Scholar
  9. Chamberlin ME (2006) Am J Physiol Regul Integr Comp Physiol 292:1016–1022CrossRefGoogle Scholar
  10. Cohen S, Flescher E (2009) Phytochemistry 70:1600–1609CrossRefGoogle Scholar
  11. Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Proc Natl Acad Sci USA 92:7143–7147CrossRefGoogle Scholar
  12. Doi H, Horie T (2010) Chem Biol Interact 183:363–368CrossRefGoogle Scholar
  13. Farmer EE, Ryan CA (1990) Proc Natl Acad Sci USA 87:7713–7716CrossRefGoogle Scholar
  14. Lowry OH, Rosenbrough NJ, Farr AL, Randal AJ (1951) J Biol Chem 193:265–275Google Scholar
  15. Malamy J, Carr J, Klessig DF, Ruskin I (1990) Science 250:1001-1004Google Scholar
  16. Metraux AM, Nawrath C, Genoud T (2002) Euphytica 124:237–243CrossRefGoogle Scholar
  17. Noreen Z, Ashraf M (2009) Environ Exp Bot 67:395–402CrossRefGoogle Scholar
  18. Norman C, Howell KA, Millar H, Whelan JM, Day DA (2004) Plant Physiol 134:492–501CrossRefGoogle Scholar
  19. Partin JC, Shubert WK, Partin JS (1971) N Engl J Med 285:1339–1343CrossRefGoogle Scholar
  20. Peng J, Deng X, Huang J, Jia S, Miao X, Huang Y (2004) Z Naturforsch C 59(11–12):856–862Google Scholar
  21. Poovala S, Huang H, Salahuddin AK (1999) J Am Soc Nephrol 10:1746–1752Google Scholar
  22. Powel CS, Jackson RM (2003) Am J Physiol Lung Cell Mol Physiol 285:L189–L198Google Scholar
  23. Raju S, Jayalakshmi SK, Sreeramulu K (2009) J Plant Physiol 166:1015–1022CrossRefGoogle Scholar
  24. Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M (2005) Cancer Res 65:1984–1993CrossRefGoogle Scholar
  25. Sapienza K, Bannister W, Balzan R (2008) Microbiology 154:2740–2747CrossRefGoogle Scholar
  26. Sharma HC (2005) Heliothis/Helicoverpa management emerging trends and strategies for future research. Oxford and IBH Publishing Co, New DelhiGoogle Scholar
  27. Somsundaram S, Rafi S, Hayllar J, Sigthorsson G, Jacob M, Price AB, Macpherson A, Mehmood D, Scott D, Wrigglesworth JM, Bjarnason I (1997) Gut 41:344–353CrossRefGoogle Scholar
  28. Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K (2004) Comp Biochem Physiol C Toxicol Pharmacol 137:261–269CrossRefGoogle Scholar
  29. Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Acta Physiol Plant 33:877–886CrossRefGoogle Scholar
  30. Theron M, Guerreron F, Sebert P (2000) J Exp Biol 203:3019–3023Google Scholar
  31. Xie Z, Chen Z (1999) Plant Physiol 120:217–225CrossRefGoogle Scholar
  32. Xu X, Tian S (2008) Postharvest Biol Technol 49:379–385CrossRefGoogle Scholar
  33. Zhang J, Ramirez VD (2000) Br J Pharmacol 130:115–1123Google Scholar
  34. Zhang LR, Xing D (2008) Plant Cell Physiol 49:1092–1111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Akbar S. MD.
    • 1
    • 2
  • H. C. Sharma
    • 2
  • Jayalakshmi S. K.
    • 3
  • Sreeramulu K
    • 1
  1. 1.Department of BiochemistryGulbarga UniversityGulbargaIndia
  2. 2.Department of EntomologyInternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  3. 3.Agriculture Research StationUniversity of Agricultural SciencesGulbargaIndia

Personalised recommendations