Journal of Bioenergetics and Biomembranes

, Volume 43, Issue 3, pp 311–322 | Cite as

Action potentials in primary osteoblasts and in the MG-63 osteoblast-like cell line

  • Maria Pangalos
  • Willem Bintig
  • Barbara Schlingmann
  • Frank Feyerabend
  • Frank Witte
  • Daniela Begandt
  • Alexander Heisterkamp
  • Anaclet NgezahayoEmail author


Whole-cell patch-clamp analysis revealed a resting membrane potential of −60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarization-induced action potentials were characterized by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of −20 mV and a repolarization between the spikes to −45 mV. Expressed channels were characterized by application of voltage pulses between −150 mV and 90 mV in 10 mV steps, from a holding potential of −40 mV. Voltages below −60 mV induced an inward current. Depolarizing voltages above −30 mV evoked two currents: (a) a fast activated and inactivated inward current at voltages between −30 and 30 mV, and (b) a delayed-activated outward current that was induced by voltages above −30 mV. Electrophysiological and pharmacological parameters indicated that hyperpolarization activated strongly rectifying K+ (Kir) channels, whereas depolarization activated tetrodotoxin sensitive voltage gated Na+ (Nav) channels as well as delayed, slowly activated, non-inactivating, and tetraethylammonium sensitive voltage gated K+ (Kv) channels. In addition, RT-PCR showed expression of Nav1.3, Nav1.4, Nav1.5, Nav1.6, Nav1.7, and Kir2.1, Kir2.3, and Kir2.4 as well as Kv2.1. We conclude that osteoblasts express channels that allow firing of action potentials.


Osteoblasts MG-63 cells Action potential Kir Kv Nav RT-PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abed E, Moreau R (2009) Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol 297:C360–C368CrossRefGoogle Scholar
  2. Bezanilla F (2007) Voltage-gated ion channels. In: Chung SH, Andersen OS, Krishnamurthy V (eds) Biological membrane ion channels: dynamics, structure and applications. Springer Science + Business Media, LLC, pp 81–118Google Scholar
  3. Bichet D, Haass FA, Jan LY (2003) Merging functional studies with structures of inward-rectifier K+ channels. Nat Rev Neurosci 4:957–967CrossRefGoogle Scholar
  4. Bosmans F, Tytgat J (2007) Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon 49:142–158CrossRefGoogle Scholar
  5. Catterall WA, Goldin AL, Waxman SG (2003) International union of pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Physiol Rev 55:575–578Google Scholar
  6. Clay JR (2005) Axonal excitability revisited. Prog Biophys Mol Biol 88:59–90CrossRefGoogle Scholar
  7. Consiglio JF, Korn SJ (2004) Influence of permeant ions on voltage sensor function in KV2.1 potassium channel. J Gen Physiol 123:387–400CrossRefGoogle Scholar
  8. Dahlmann A, Li M, Gao ZH, McGarrigle D, Sackin H, Palmer LG (2004) Regulation of Kir channels by intracellular pH and extracellular K+: mechanism of coupling. J Gen Physiol 123:441–454CrossRefGoogle Scholar
  9. de Boer TP, Houtman MJC, Compier M, van der Heyden MAG (2010) The mammalian Kir2.x inward rectifier ion channel family: expression pattern and pathophysiology. Acta Physiol 199:243–255Google Scholar
  10. Flagg TP, Enkvetchakul D, Koster JC, Nichols CG (2010) Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 90:799–829CrossRefGoogle Scholar
  11. Fozzard HA, Lipkind GM (2010) The tetrodotoxin binding site is within the outer vestibule of the sodium channel. Mar Drugs 8:219–234CrossRefGoogle Scholar
  12. Gallagher JA (2003) Human osteoblast culture. Meth Mol Med 80:3–18Google Scholar
  13. Goldin AL (2002) Evolution of voltage-gated Na+ channels. J Exp Biol 205:575–584Google Scholar
  14. Hanck DA, Fozzard HA (2007) Voltage-gated sodium channels. In: Chung SH, Andersen OS, Krishnamurthy V (eds) Biological membrane ion channels: dynamics, structure and applications. Springer Science + Business Media, LLC, pp 219–239Google Scholar
  15. Heitzmann D, Warth R (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 88:1119–1182CrossRefGoogle Scholar
  16. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366CrossRefGoogle Scholar
  17. Hille B (2003) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Press, SanderlandGoogle Scholar
  18. Hodgkin AL, Huxley AF (1945) Resting and action potentials in single nerve fibres. J Physiol 104:176–195Google Scholar
  19. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to induction and excitation in nerve. J Physiol 117:500–544Google Scholar
  20. Koopmann TT, Bezzina CR, Wilde AAM (2006) Voltage-gated sodium channels: action players with many faces. Ann Med 38:472–482CrossRefGoogle Scholar
  21. Korn SJ, Trapani JG (2007) Voltage-gated potassium channels. In: Chung SH, Andersen OS, Krishnamurthy V (eds) Biological membrane ion channels: dynamics, structure and applications. Springer Science + Business Media, LLC, pp 119–170Google Scholar
  22. Lee CH, Ruben PC (2008) Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2:407–412CrossRefGoogle Scholar
  23. Lee DH, Kimm K, Kim HL, Han BG (2007) Heterogeneous composition of voltage-dependent K+ currents in hepatic stellate cells. Yonsei Med J 48:684–693CrossRefGoogle Scholar
  24. Lei M, Jones SA, Liu J, Lancaster MK, Fung SSM, Dobrzynski H, Camelliti P, Maier SKG, Noble D, Boyett MR (2004) Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol 559:835–848Google Scholar
  25. Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 66:1–13CrossRefGoogle Scholar
  26. Narahashi T (2008) Tetrodotoxin: a brief history. Proc Jpn Acad Ser B Phys Biol Sci 84:147–154CrossRefGoogle Scholar
  27. Nerbonne JM (2000) Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol 525:285–298CrossRefGoogle Scholar
  28. Oliver D, Baukrowitz T, Fakler B (2000) Polyamines as gating of inward rectifier K+ channels. Eur J Biochem 267:5824–5829CrossRefGoogle Scholar
  29. Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601CrossRefGoogle Scholar
  30. Panama BK, Lopatin AN (2006) Differential polyamine sensitivity in inwardly rectifying Kir2 potassium channels. J Physiol 571:287–302CrossRefGoogle Scholar
  31. Pearson WL, Dourado M, Schreiber M, Salkof L, Nichols CG (1999) Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. J Physiol 514:639–653CrossRefGoogle Scholar
  32. Penzotti JL, Lipkind G, Fozzard HA, Dudley SC Jr (2001) Specific neosaxitoxin interactions with the Na+ channel outer vestibule determined by mutant cycle analysis. Biophys J 80:698–706CrossRefGoogle Scholar
  33. Ruppersberg JP (2000) Intracellular regulation of inward rectifier K+ channels. Pflügers Arch Eur J Physiol 441:1–11CrossRefGoogle Scholar
  34. Song WJ (2002) Genes responsible for native depolarization-activated K+ currents. Neurosci Res 42:7–14CrossRefGoogle Scholar
  35. Wang H, Mao Y, Zhang B, Wang T, Li F, Fu S, Xue Y, Yang T, Wen X, Ding Y, Duan X (2010) Chloride channel ClC-3 promotion of osteogenic differentiation through Runx2. J Cell Biochem 111:49–58CrossRefGoogle Scholar
  36. Zahanich I, Graf EM, Heubach JF, Hempel U, Boxberger S, Ravens U (2005) Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 20:1637–1646CrossRefGoogle Scholar
  37. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria Pangalos
    • 1
  • Willem Bintig
    • 1
  • Barbara Schlingmann
    • 1
    • 2
  • Frank Feyerabend
    • 3
  • Frank Witte
    • 5
  • Daniela Begandt
    • 1
  • Alexander Heisterkamp
    • 4
  • Anaclet Ngezahayo
    • 1
    • 2
    Email author
  1. 1.Institute of BiophysicsLeibniz University of HannoverHannoverGermany
  2. 2.Center for Systemic Neuroscience (ZSN)HannoverGermany
  3. 3.Department for Structural Research on MacromoleculesHelmholtz-Zentrum Geesthacht, Institute of Materials ResearchGeesthachtGermany
  4. 4.Laser Zentrum Hannover e.VHannoverGermany
  5. 5.Implant-Immunology, CrossBIT - Center for Biocompatibility and Implant-ImmunologyHannover Medical SchoolHannoverGermany

Personalised recommendations