Journal of Bioenergetics and Biomembranes

, Volume 43, Issue 2, pp 135–147 | Cite as

Electron transport chain dysfunction by H2O2 is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria

  • Christian Cortés-Rojo
  • Mirella Estrada-Villagómez
  • Elizabeth Calderón-Cortés
  • Mónica Clemente-Guerrero
  • Ricardo Mejía-Zepeda
  • Istvan Boldogh
  • Alfredo Saavedra-Molina
Article

Abstract

The mitochondrial electron transport chain (ETC) contains thiol groups (−SH) which are reversibly oxidized to modulate ETC function during H2O2 overproduction. Since deleterious effects of H2O2 are not limited to –SH oxidation, due to the formation of other H2O2-derived species, some processes like lipoperoxidation could enhance the effects of H2O2 over ETC enzymes, disrupt their modulation by –SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H2O2 on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H2O2 and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

Keywords

Yeast Oxidative stress Lipid peroxidation Thiol oxidation Respiratory chain β-mercaptoethanol Linolenic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avéret N, Fitton V, Bunoust O, Rigoulet M, Guérin B (1998) Mol Cell Biochem 184:67–79CrossRefGoogle Scholar
  2. Beal MF (2003) Ann NY Acad Sci 991:120–131CrossRefGoogle Scholar
  3. Boveris A, Cadenas E (1975) FEBS Lett 54:311–314CrossRefGoogle Scholar
  4. Breuer W, Epsztejn S, Cabantchik ZI (1995) J Biol Chem 270:24209–24215CrossRefGoogle Scholar
  5. Buege JA, Aust D (1978) Methods Enzymol 52:302–310CrossRefGoogle Scholar
  6. Cadenas E, Davies KJA (2000) Free Radic. Biol Méd 29:222–230Google Scholar
  7. Cardoso SM, Pereira C, Oliveira R (1999) Free Radic. Biol Méd 26:3–13Google Scholar
  8. Chen Y-R, Gunther MR, Mason RP (1999) J Biol Chem 274:3308–3314CrossRefGoogle Scholar
  9. Chen H, Zheng C, Zhang Y, Chang Y-Z, Qian ZM, Shen X (2006) Int J Biochem Cell Biol 38:1402–1416CrossRefGoogle Scholar
  10. Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Manzo-Avalos S, Uribe S, Boldogh I, Saavedra-Molina A (2007) Free Radic Res 41:1212–1223CrossRefGoogle Scholar
  11. Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Avalos S, Mejía-Zepeda R, Boldogh I, Saavedra-Molina A (2009) J Bioenerg Biomembr 41:15–28CrossRefGoogle Scholar
  12. Dikalov S, Losik T, Arbiser JL (2008) Biochem Pharmacol 76:589–596CrossRefGoogle Scholar
  13. Dimroth P, Kaim G, Matthey U (2000) J Exp Biol 203:51–59Google Scholar
  14. Forman HJ, Fukuto JM, Torres M (2004) Am J Physiol Cell Physiol 287:C246–C256CrossRefGoogle Scholar
  15. Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–765Google Scholar
  16. Guérin B, Labbe P, Somlo M (1979) Methods Enzymol 55:149–159CrossRefGoogle Scholar
  17. Hallberg EM, Shu Y, Hallberg RL (1993) Mol Cell Biol 13:3050–3057Google Scholar
  18. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New YorkGoogle Scholar
  19. Holman RT (1954) In: Holman RT, Lundberg WO, Malkin T (eds) Progress in the chemistry of fats and other lipids: autooxidation of fats and related substances. Academic Press, New York, pp 51–98Google Scholar
  20. Hondorp ER, Matthews RG (2004) PLoS Biol 2:e336CrossRefGoogle Scholar
  21. Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP (2007) J Biol Chem 282:22040–22051CrossRefGoogle Scholar
  22. Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) J Biol Chem 283:24801–24815CrossRefGoogle Scholar
  23. Jacob C, Holme AL, Fry FH (2004) Org Biomol Chem 2:1953–1956CrossRefGoogle Scholar
  24. Jakob U, Eser M, Bardwell JC (2000) J Biol Chem 275:38302–38310CrossRefGoogle Scholar
  25. James AM, Cochemé HM, Smith RAJ, Murphy MP (2005) J Biol Chem 280:21295–21312CrossRefGoogle Scholar
  26. Jang S, Imlay JA (2007) J Biol Chem 282:929–937CrossRefGoogle Scholar
  27. Jha N, Jurma O, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, Andersen JK (2000) J Biol Chem 275:26096–26101CrossRefGoogle Scholar
  28. Jones DP (2008) Am J Physiol Cell Physiol 295:849–868CrossRefGoogle Scholar
  29. Kiley PJ, Storz G (2004) PLoS Biol 2:1714–1717CrossRefGoogle Scholar
  30. Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG (2000) Anal Biochem 283:214–221CrossRefGoogle Scholar
  31. Kim MH, Chung J, Yang JW, Chung SM, Kwag NH, Yoo JS (2003) Korean J Ophthalmol 17:19–28Google Scholar
  32. Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) J Biol Chem 280:37481–37488CrossRefGoogle Scholar
  33. Krause KH (2007) Exp Gerontol 42:256–262CrossRefGoogle Scholar
  34. Kwok E, Kosman D (2006) In: Tamàs MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. From microbes to man: iron in yeast: mechanisms involved in homeostasis. Springer, Berlin, pp 59–100Google Scholar
  35. Lê-Quôc K, Lê-Quôc D, Gaudemer Y (1981) Biochemistry 20:1705–1710CrossRefGoogle Scholar
  36. Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RA, Murphy MP (2002) J Biol Chem 277:17048–17056CrossRefGoogle Scholar
  37. Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Arch Biochem Biophys 365:131–142CrossRefGoogle Scholar
  38. Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J (2004) Polish J Environ Studies 13:397–401Google Scholar
  39. Ly JD, Grubb DR, Lawen A (2003) Apoptosis 8:115–128CrossRefGoogle Scholar
  40. Malis CD, Weber PC, Leaf A, Bonventre JV (1999) Proc Natl Acad Sci USA 87:8845–8849CrossRefGoogle Scholar
  41. Martin J, Mahlke K, Pfanner N (1991) J Biol Chem 266:18051–18057Google Scholar
  42. Martin CE, Oh C, Jiang Y (2007) Biochim Biophys Acta 1771:271–285Google Scholar
  43. Masini A, Ceccarelli D, Giovannini F, Montosi G, Garuti C, Pietrangelo AJ (2000) J Bioenerg Biomembr 32:175–182CrossRefGoogle Scholar
  44. Matsuno-Yagi A, Hatefi Y (1996) J Biol Chem 271:6164–6171CrossRefGoogle Scholar
  45. Muller FL, Crofts AR, Kramer DM (2002) Biochemistry 41:7866–7874CrossRefGoogle Scholar
  46. Nicholls DG (2005) Cell Calcium 38:311–317CrossRefGoogle Scholar
  47. North JA, Spector AA, Buettner GR (1992) J Biol Chem 267:5743–5746Google Scholar
  48. Nulton-Persson AC, Szweda LI (2001) J Biol Chem 276:23357–23361CrossRefGoogle Scholar
  49. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Gastroenterology 122:366–375CrossRefGoogle Scholar
  50. Schoneich C, Dillinger U, von Bruchhausen F, Asmus KD (1992) Arch Biochem Biophys 292:456–467CrossRefGoogle Scholar
  51. Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Vielhaber S, Wussling MHP, Trumbeckaite S, Arandarcikaite O, Jerzembeck D, Sonnabend M, Jegorov K, Zierz S, Striggow F, Gellerich FN (2009) Int J Mol Sci 10:2252–2303CrossRefGoogle Scholar
  52. Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM, Protect Study Group (2010) Mov Disord 25:1670–1674CrossRefGoogle Scholar
  53. Spector A, Wang G-M, Wang R-R (1993) Proc Natl Acad Sci USA 90:7485–7489CrossRefGoogle Scholar
  54. Tatsumi T, Kako KJ (1993) Basic Res Cardiol 88:199–211Google Scholar
  55. Turrens JF (2003) J Physiol 552:335–344CrossRefGoogle Scholar
  56. Ueda N, Guidet B, Shah SV (1993) Am J Physiol 265:F435–F439Google Scholar
  57. Uribe S, Ramirez J, Peña A (1985) J Bact 161:1195–1200Google Scholar
  58. Vygodina TV, Konstantinov AA (2007) Biochemistry (Mosc) 72:1056–1064CrossRefGoogle Scholar
  59. Zheng M, Aslund F, Storz G (1998) Science 279:1718–1721CrossRefGoogle Scholar
  60. Zini R, Berdeaux A, Morin D (2007) Free Radic Res 41:1159–1166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Cortés-Rojo
    • 1
  • Mirella Estrada-Villagómez
    • 2
  • Elizabeth Calderón-Cortés
    • 3
  • Mónica Clemente-Guerrero
    • 2
  • Ricardo Mejía-Zepeda
    • 4
  • Istvan Boldogh
    • 5
  • Alfredo Saavedra-Molina
    • 2
    • 5
  1. 1.Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”Universidad Michoacana de San Nicolás de HidalgoMoreliaMéxico
  2. 2.Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico
  3. 3.Facultad de EnfermeríaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico
  4. 4.Facultad de Estudios Superiores Iztacala, Unidad de BiomedicinaUNAMTlalnepantlaMéxico
  5. 5.School of MedicineUniversity of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations