Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 6, pp 467–471 | Cite as

Mitochondria and neonatal epileptic encephalopathies with suppression burst

  • Florence Molinari


The mitochondrion is a key cellular structure involved in many metabolic functions such as ATP synthesis by oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation. These pathways are fundamental for biological processes such as cell proliferation or death. In the central nervous system, mitochondria dysfunctions have been involved in many neurological diseases and age-related neurodegenerative disorders, including epilepsy, Alzheimer’s and Parkinson’s diseases. Mitochondrial diseases are frequently caused by a disruption of the respiratory chain. Nevertheless, other mitochondrial functions, including organellar dynamics or metabolite transport, could also be involved in such pathologies. Here we described mitochondrial dysfunctions in a very severe, intractable and relatively rare neonatal epileptic encephalopathy, the Ohtahara syndrome. This condition is characterized by neonatal onset of seizures, interictal electroencephalogram with suppression burst pattern and a very poor outcome with very severe psychomotor retardation or death. The etiology of this disease remains elusive but seems to be very heterogeneous including brain malformations, metabolic errors, transcription factor and synaptic vesicle release defects. In this review, we discuss first the Ohtahara syndrome caused by mitochondrial respiratory chain damages, suggesting that these defects could be more common than previously thought. Then, we will adress the importance of the mitochondrial glutamate carrier SLC25A22 in these pathologies, since mutations of this gene were described in two distinct families. These findings suggest that glutamate metabolism should also be considered as an important cause of the Ohtahara syndrome.


Ohtahara syndrome Mitochondria SLC25A22 Glutamate carrier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Absoud M, Parr JR, Halliday D, Pretorius P, Zaiwalla Z, Jayawant S (2010) Dev Med Child Neurol 52(3):305–307CrossRefGoogle Scholar
  2. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL (1999) J Neurosci 19(11):4449–4461Google Scholar
  3. Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) J Neurosci Res 85:3367–3377CrossRefGoogle Scholar
  4. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) J Biol Chem 281(43):32724–32727CrossRefGoogle Scholar
  5. Castro-Gago M, Blanco-Barca MO, Gómez-Lado C, Eirís-Puñal J, Campos-González Y, Arenas-Barbero J (2009) Brain Dev 31(4):322–325CrossRefGoogle Scholar
  6. Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JL, Broccoli V (2007) J Neurosci 27(17):4786–4798CrossRefGoogle Scholar
  7. Danbolt NC (2001) Prog Neurobiol 65(1):1–105CrossRefGoogle Scholar
  8. DiMauro S, Schon EA (2008) Annu Rev Neurosci 31:91–123CrossRefGoogle Scholar
  9. Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE (2002) J Biol Chem 277(22):19289–19294CrossRefGoogle Scholar
  10. Friocourt G, Kanatani S, Tabata H, Yozu M, Takahashi T, Antypa M, Raguénès O, Chelly J, Férec C, Nakajima K, Parnavelas JG (2008) J Neurosci 28(22):5794–5805CrossRefGoogle Scholar
  11. Fullston T, Brueton L, Willis T, Philip S, MacPherson L, Finnis M, Gecz J, Morton J (2010) Eur J Hum Genet 18(2):157–162CrossRefGoogle Scholar
  12. Hardingham GE, Fukunaga Y, Bading H (2002) Nat Neurosci 5(5):405–414Google Scholar
  13. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006) J Physiol 572(3):789–798Google Scholar
  14. Kato M, Saitoh S, Kamei A, Shiraishi H, Ueda Y, Akasaka M, Tohyama J, Akasaka N, Hayasaka K (2007) Am J Hum Genet 81(2):361–366CrossRefGoogle Scholar
  15. Kato M, Koyama N, Ohta M, Miura K, Hayasaka K (2010) EpilepsiaGoogle Scholar
  16. Khanna R, Li Q, Bewersdorf J, Stanley EF (2007) Eur J Neurosci 26(3):547–559CrossRefGoogle Scholar
  17. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Nat Genet 32(3):359–369CrossRefGoogle Scholar
  18. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) Neuron 15(6):1287–1298CrossRefGoogle Scholar
  19. Manent JB, Demarque M, Jorquera I, Pellegrino C, Ben-Ari Y, Aniksztejn L, Represa A (2005) J Neurosci 25(19):4755–4765CrossRefGoogle Scholar
  20. Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L, Palmieri F, Ben-Neriah Z, Kadhom N, Vekemans M, Attie-Bitach T, Munnich A, Rustin P, Colleaux L (2005) Am J Hum Genet 76(2):334–339CrossRefGoogle Scholar
  21. Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin P, Palmieri L, Brunelle F, Palmieri F, Dulac O, Munnich A, Colleaux L (2009) Clin Genet 76(2):188–194CrossRefGoogle Scholar
  22. Ohtahara S, Ishida T, Oka E, Yamatogi Y, Inoue H (1976) No To Hattatsu (Tokyo) 8:270–280Google Scholar
  23. Ohtahara S, Yamatogi Y, Ohtsuka Y, Oka E, Kanda S (1977) Folia Psychiatr Neurol Jpn 31:301–313Google Scholar
  24. Ohtahara S, Ohtsuka Y, Yamatogi Y, Oka E, Inoue H (1992) In: Roger J, Bureau M, Dravet C, Dreifuss FE, Perret A, Wolf P (eds) Epileptic syndromes in infancy, childhood and adolescence. 2nd ed. London: John Libbey, 1992:25–34Google Scholar
  25. Ohtahara S, Yamatogi Y (2003) J Clin Neurophysiol 20(6):398–407CrossRefGoogle Scholar
  26. Palmieri F (2004) Pflugers Arch 447(5):689–709CrossRefGoogle Scholar
  27. Palmieri F, Indiveri C, Bisaccia F, Iacobazzi V (1995) Methods Enzymol 260:349–369CrossRefGoogle Scholar
  28. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, Uruno K, Kumada S, Nishiyama K, Nishimura A, Okada I, Yoshimura Y, Hirai S, Kumada T, Hayasaka K, Fukuda A, Ogata K, Matsumoto N (2008) Nat Genet 40(6):782–788CrossRefGoogle Scholar
  29. Seo JH, Lee YM, Lee JS, Kim SH, Kim HD (2010) Brain Dev 32(3):253–257CrossRefGoogle Scholar
  30. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC (2000) Science 287(5454):864–869CrossRefGoogle Scholar
  31. Vigevano F, Bartuli A (2002) J Child Neurol 17(Suppl 3):9–14Google Scholar
  32. Wan P, Zhang YP, Yan J, Xu YX, Wang HQ, Yang R, Zhu CQ (2010) Neurosci Bull 26(4):273–281CrossRefGoogle Scholar
  33. Williams AN, Gray RG, Poulton K, Ramani P, Whitehouse WP (1998) Dev Med Child Neurol 40(8):568–570CrossRefGoogle Scholar
  34. Yamatogi Y, Ohtahara S (1981) Folia Psychiatr Neurol Jpn 35:321–332Google Scholar
  35. Yang R, Puranam RS, Butler LS, Qian WH, He XP, Moyer MB, Blackburn K, Andrews PI, McNamara JO (2000) Neuron 28(2):375–383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.INMED—INSERM U901Parc Scientifique de LuminyMarseilleFrance
  2. 2.Université de la MéditerranéeAix-Marseille 2France
  3. 3.Institut de Neurobiologie de la Méditerranée INMEDMarseilleFrance

Personalised recommendations