Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 6, pp 449–455 | Cite as

Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?

  • Simon Waldbaum
  • Manisha Patel
Article

Abstract

Mitochondrial dysfunction and oxidative stress contribute to several neurologic disorders and have recently been implicated in acquired epilepsies such as temporal lobe epilepsy (TLE). Acquired epilepsy is typically initiated by a brain injury followed by a “latent period” whereby molecular, biochemical and other cellular alterations occur in the brain leading to chronic epilepsy. Mitochondrial dysfunction and oxidative stress are emerging as factors that not only occur acutely as a result of precipitating injuries such as status epilepticus (SE), but may also contribute to epileptogenesis and chronic epilepsy. Mitochondria are the primary site of reactive oxygen species (ROS) making them uniquely vulnerable to oxidative damage that may affect neuronal excitability and seizure susceptibility. This mini-review provides an overview of evidence suggesting the role of mitochondrial dysfunction and oxidative stress as acute consequences of injuries that are known to incite chronic epilepsy and their involvement in the chronic stages of acquired epilepsy.

Keywords

Epilepsy Mitochondria Oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barros DO, Xavier SM, Barbosa CO, Silva RF, Freitas RL, Maia FD, Oliveira AA, Freitas RM, Takahashi RN (2007) Effects of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats. Neurosci Lett 416:227–230CrossRefGoogle Scholar
  2. Bellissimo MI, Amado D, Abdalla DS, Ferreira EC, Cavalheiro EA, Naffah-Mazzacoratti MG (2001) Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res 46:121–128CrossRefGoogle Scholar
  3. Bhargava A, Khan S, Panwar H, Pathak N, Punde RP, Varshney S, Mishra PK (2010) Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus Res 153:143–150CrossRefGoogle Scholar
  4. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235CrossRefGoogle Scholar
  5. Bruce AJ, Baudry M (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18:993–1002CrossRefGoogle Scholar
  6. Chang CK, Chang CP, Liu SY, Lin MT (2007) Oxidative stress and ischemic injuries in heat stroke. Prog Brain Res 162:525–546CrossRefGoogle Scholar
  7. Chuang YC, Chang AY, Lin JW, Hsu SP, Chan SH (2004) Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat. Epilepsia 45:1202–1209CrossRefGoogle Scholar
  8. Cini M, Moretti A (1995) Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging 16:53–57CrossRefGoogle Scholar
  9. Dal-Pizzol F, Klamt F, Vianna MM, Schroder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182CrossRefGoogle Scholar
  10. Deshpande LS, Sun DA, Sombati S, Baranova A, Wilson MS, Attkisson E, Hamm RJ, DeLorenzo RJ (2008) Alterations in neuronal calcium levels are associated with cognitive deficits after traumatic brain injury. Neurosci Lett 441:115–119CrossRefGoogle Scholar
  11. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389CrossRefGoogle Scholar
  12. Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, Coulter DA, Carmignoto G, Haydon PG (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27:10674–10684CrossRefGoogle Scholar
  13. Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37CrossRefGoogle Scholar
  14. Erakovic V, Zupan G, Varljen J, Laginja J, Simonic A (2000) Lithium plus pilocarpine induced status epilepticus–biochemical changes. Neurosci Res 36:157–166CrossRefGoogle Scholar
  15. Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435CrossRefGoogle Scholar
  16. Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307–1312CrossRefGoogle Scholar
  17. Gao J, Chi ZF, Liu XW, Shan PY, Wang R (2007) Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat. Neurosci Lett 411:152–157CrossRefGoogle Scholar
  18. Gil L, Martinez G, Gonzalez I, Tarinas A, Alvarez A, Giuliani A, Molina R, Tapanes R, Perez J, Leon OS (2003) Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 47:217–224CrossRefGoogle Scholar
  19. Gluck MR, Jayatilleke E, Shaw S, Rowan AJ, Haroutunian V (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39:63–71CrossRefGoogle Scholar
  20. Hammer J, Alvestad S, Osen KK, Skare O, Sonnewald U, Ottersen OP (2008) Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy. Glia 56:856–868CrossRefGoogle Scholar
  21. Helms G, Ciumas C, Kyaga S, Savic I (2006) Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J Neurol Neurosurg Psychiatry 77:489–494CrossRefGoogle Scholar
  22. Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–667CrossRefGoogle Scholar
  23. Jain A, Martensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917CrossRefGoogle Scholar
  24. Jarrett SG, Liang LP, Hellier JL, Staley KJ, Patel M (2008a) Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis 30:130–138CrossRefGoogle Scholar
  25. Jarrett SG, Milder JB, Liang LP, Patel M (2008b) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106:1044–1051CrossRefGoogle Scholar
  26. Kann O, Kovacs R, Njunting M, Behrens CJ, Otahal J, Lehmann TN, Gabriel S, Heinemann U (2005) Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128:2396–2407CrossRefGoogle Scholar
  27. Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15:1105–1114CrossRefGoogle Scholar
  28. Kunz WS, Kudin AP, Vielhaber S, Blumcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773CrossRefGoogle Scholar
  29. Liang LP, Patel M (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(−/+) mice. Free Radic Biol Med 36:542–554CrossRefGoogle Scholar
  30. Liang LP, Patel M (2006) Seizure-induced changes in mitochondrial redox status. Free Radic Biol Med 40:316–322CrossRefGoogle Scholar
  31. Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570CrossRefGoogle Scholar
  32. Liang LP, Jarrett SG, Patel M (2008) Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J Neurosci 28:11550–11556CrossRefGoogle Scholar
  33. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472Google Scholar
  34. Melov S, Doctrow SR, Schneider JA, Haberson J, Patel M, Coskun PE, Huffman K, Wallace DC, Malfroy B (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 21:8348–8353Google Scholar
  35. Milder JB, Liang LP, Patel M (2010) Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis 40:238–244CrossRefGoogle Scholar
  36. Mohajeri MH, Madani R, Saini K, Lipp HP, Nitsch RM, Wolfer DP (2004) The impact of genetic background on neurodegeneration and behavior in seizured mice. Genes Brain Behav 3:228–239CrossRefGoogle Scholar
  37. Mohanan PV, Yamamoto HA (2002) Preventive effect of melatonin against brain mitochondria DNA damage, lipid peroxidation and seizures induced by kainic acid. Toxicol Lett 129:99–105CrossRefGoogle Scholar
  38. Mueller SG, Trabesinger AH, Boesiger P, Wieser HG (2001) Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology 57:1422–1427Google Scholar
  39. Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280Google Scholar
  40. Ozawa M, Hirabayashi M, Kanai Y (2002) Developmental competence and oxidative state of mouse zygotes heat-stressed maternally or in vitro. Reproduction 124:683–689CrossRefGoogle Scholar
  41. Patel M, Day BJ (1999) Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci 20:359–364CrossRefGoogle Scholar
  42. Patel M, Li QY (2003) Age dependence of seizure-induced oxidative stress. Neuroscience 118:431–437CrossRefGoogle Scholar
  43. Patel M, Liang LP, Roberts LJ 2nd (2001) Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J Neurochem 79:1065–1069CrossRefGoogle Scholar
  44. Patel M, Li QY, Chang LY, Crapo J, Liang LP (2005) Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J Neurochem 92:123–131CrossRefGoogle Scholar
  45. Patel M, Liang LP, Hou H, Williams BB, Kmiec M, Swartz HM, Fessel JP, Roberts LJ 2nd (2008) Seizure-induced formation of isofurans: novel products of lipid peroxidation whose formation is positively modulated by oxygen tension. J Neurochem 104:264–270Google Scholar
  46. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710CrossRefGoogle Scholar
  47. Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391CrossRefGoogle Scholar
  48. Reed DJ, Savage MK (1995) Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochim Biophys Acta 1271:43–50Google Scholar
  49. Savic I, Thomas AM, Ke Y, Curran J, Fried I, Engel J Jr (2000) In vivo measurements of glutamine + glutamate (Glx) and N-acetyl aspartate (NAA) levels in human partial epilepsy. Acta Neurol Scand 102:179–188CrossRefGoogle Scholar
  50. Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 94:4103–4108CrossRefGoogle Scholar
  51. Schwarzbold ML, Rial D, De Bem TD, Machado DG, Cunha MP, Dos Santos AA, Dos Santos DB, Figueiredo CP, Farina M, Goldfeder EM, Rodrigues AL, Prediger RD, Walz R (2010) Effects of traumatic brain injury of different severity on emotional, cognitive and oxidative stress-related parameters in mice. J Neurotrauma 10:1883–93Google Scholar
  52. Sleven H, Gibbs JE, Heales S, Thom M, Cock HR (2006) Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus. Neurochem Int 48:75–82CrossRefGoogle Scholar
  53. Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303:19–24CrossRefGoogle Scholar
  54. Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55:576–580CrossRefGoogle Scholar
  55. Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH (1998) Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res 54:382–389CrossRefGoogle Scholar
  56. Tang L, Reiter RJ, Li ZR, Ortiz GG, Yu BP, Garcia JJ (1998) Melatonin reduces the increase in 8-hydroxy-deoxyguanosine levels in the brain and liver of kainic acid-treated rats. Mol Cell Biochem 178:299–303CrossRefGoogle Scholar
  57. Tejada S, Sureda A, Roca C, Gamundi A, Esteban S (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull 71:372–375CrossRefGoogle Scholar
  58. Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC (1999) Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88:1083–1091CrossRefGoogle Scholar
  59. van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333Google Scholar
  60. Vielhaber S, Niessen HG, Debska-Vielhaber G, Kudin AP, Wellmer J, Kaufmann J, Schonfeld MA, Fendrich R, Willker W, Leibfritz D, Schramm J, Elger CE, Heinze HJ, Kunz WS (2008) Subfield-specific loss of hippocampal N-acetyl aspartate in temporal lobe epilepsy. Epilepsia 49:40–50CrossRefGoogle Scholar
  61. Waldbaum S, Liang LP, Patel M (2010) Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 115:1172–1182CrossRefGoogle Scholar
  62. Weiergraber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T (2007) Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J Neurophysiol 97:3660–3669CrossRefGoogle Scholar
  63. Werner P, Cohen G (1993) Glutathione disulfide (GSSG) as a marker of oxidative injury to brain mitochondria. Ann NY Acad Sci 679:364–369CrossRefGoogle Scholar
  64. Xavier SM, Barbosa CO, Barros DO, Silva RF, Oliveira AA, Freitas RM (2007) Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine. Neurosci Lett 420:76–79CrossRefGoogle Scholar
  65. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126:313–323CrossRefGoogle Scholar
  66. Yamamoto HA, Mohanan PV (2003) Ganglioside GT1B and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res 964:100–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of Colorado Denver Anschutz Medical CampusAuroraUSA

Personalised recommendations