Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 5, pp 419–432 | Cite as

Estimation of the electric plasma membrane potential difference in yeast with fluorescent dyes: comparative study of methods

  • Antonio Peña
  • Norma Silvia Sánchez
  • Martha Calahorra


Different methods to estimate the plasma membrane potential difference (PMP) of yeast cells with fluorescent monitors were compared. The validity of the methods was tested by the fluorescence difference with or without glucose, and its decrease by the addition of 10 mM KCl. Low CaCl2 concentrations avoid binding of the dye to the cell surface, and low CCCP concentrations avoid its accumulation by mitochondria. Lower concentrations of Ba2+ produce a similar effect as Ca2+, without producing the fluorescence changes derived from its transport. Fluorescence changes without considering binding of the dyes to the cells and accumulation by mitochondria are overshadowed by their distribution between this organelle and the cytoplasm. Other factors, such as yeast starvation, dye used, parameters of the fluorescence changes, as well as buffers and incubation times were analyzed. An additional approach to measure the actual or relative values of PMP, determining the accumulation of the dye, is presented.


Yeast Membrane potential indicators Ion transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10863_2010_9311_MOESM1_ESM.jpg (44 kb)
Fig. 1SFluorescence changes of DiSC3(3) added to non-starved yeast cells; effects of anaerobiosis and CCCP. Incubation: 10 mM MES-TEA buffer, pH 6.0, with (black lines) and without glucose (gray lines); effects of H2O2 (17 μmoles) and CCCP (10 μM). The experiment was carried out as described for Fig. 1, and both additions are indicated in the figure. AU, arbitrary units (JPEG 43 kb)


  1. Bertl A, Slayman CL, Gradmann S (1993) J Membr Biol 132:183–199Google Scholar
  2. Bertl A, Ramos J, Ludwig J, Lichtenberg-Fraté H, Reid J, Bihler H, Calero F, Martínez LO (2003) Mol Microbiol 47:767–780CrossRefGoogle Scholar
  3. Borst-Pauwels GWFH, Van de Mortel JBJ, Theuvenet APR (1992) FEMS Microbiol Lett 95:99–104CrossRefGoogle Scholar
  4. Boxman AW, Dobbelmann J, Borst-Pauwels GWFH (1984) Biochim Biophys Acta 772:51–57CrossRefGoogle Scholar
  5. Dufour JP, Goffeau A, Tsong TY (1982) J Biol Chem 257:9365–9371Google Scholar
  6. Eilam Y, Lavi H, Grossowicz N (1985) Microbios 44:51–66Google Scholar
  7. Gaber RF, Styles CA, Fink GR (1988) Mol Cell Biol 8:2848–2858Google Scholar
  8. Gage RA, Van Wijngaarden W, Theuvenet APR, Borst-Pauwels GWFH, Verjleij AJ (1985) Biochim Biophys Acta 812:1–8CrossRefGoogle Scholar
  9. Gaskova D, Brodska B, Herman P, Vecer J, Malinsky J, Sigler K, Benada O, Plasek O (1998) Yeast 14:1189–1197CrossRefGoogle Scholar
  10. Kinclova-Zimmermannova O, Gaskova D, Sychrova H (2006) FEMS Yeast Res 6:792–800CrossRefGoogle Scholar
  11. Ko CH, Buckley AM, Gaber RF (1990) Genetics 125:305–312Google Scholar
  12. Madrid R, Gómez MJ, Ramos J, Rodríguez-Navarro A (1998) J Biol Chem 273:14838–14844CrossRefGoogle Scholar
  13. Malpartida F, Serrano R (1981) J Biol Chem 256:4175–4177Google Scholar
  14. Maresova L, Urbankoba E, Gaskova D, Sychrova H (2006) FEMS Yeast Res 6:1039–1046CrossRefGoogle Scholar
  15. Maresova L, Muend S, Zhang Y-Q, Sychrova H, Rao R (2009) J Biol Chem 284:2795–2802CrossRefGoogle Scholar
  16. Peña A (1975) Arch Biochem Biophys 167:397–409CrossRefGoogle Scholar
  17. Peña A, Cinco G, Gómez-Puyou A, Tuena M (1972) Arch Biochem Biophys 153:413–425CrossRefGoogle Scholar
  18. Peña A, Clemente SM, Borbolla M, Carrasco N, Uribe S (1980) Arch Biochem Biophys 201:420–428CrossRefGoogle Scholar
  19. Peña A, Uribe S, Pardo JP, Borbolla M (1984) Arch Biochem Biophys 231:217–225CrossRefGoogle Scholar
  20. Peña A, Calahorra M, Michel B, Ramírez J, Sánchez NS (2009) FEMS Yeast Res 9:832–848CrossRefGoogle Scholar
  21. Rodríguez-Navarro A, Ramos J (1984) J Bacteriol 159:940–945Google Scholar
  22. Sánchez NS, Arreguín R, Calahorra M, Peña A (2008) FEMS Yeast Res 8:1303–1312CrossRefGoogle Scholar
  23. Serrano R, Kielland-Brandt MC, Fink GR (1986) Nature 319:689–693CrossRefGoogle Scholar
  24. Sigler K, Höfer M (1991) Biochem Int 23:861–873Google Scholar
  25. Sims PJ, Waggoner AS, Wong CH, Hoffman JF (1974) Biochemistry 13:3315–3330CrossRefGoogle Scholar
  26. Theuvenet APR, Van de Wijngaarden WMH, Van de Rijke JW, Borst-Pauwels GWFH (1984) Biochim Biophys Acta 775:161–168CrossRefGoogle Scholar
  27. Uribe S, Ramírez J, Peña A (1985) J Bacteriol 161:1195–1200Google Scholar
  28. Waggoner AS (1979) Annu Rev Biophys Bioeng 8:47–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Antonio Peña
    • 1
  • Norma Silvia Sánchez
    • 1
  • Martha Calahorra
    • 1
  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico, D. F.México

Personalised recommendations