Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 3, pp 241–243 | Cite as

A resonance Raman band assignable to the O–O stretching mode in the resting oxidized state of bovine heart cytochrome c oxidase

  • Miyuki Sakaguchi
  • Kyoko Shinzawa-Itoh
  • Shinya Yoshikawa
  • Takashi Ogura
Article

Abstract

In the resting oxidized state (the fully oxidized “as-isolated” state) of cytochrome c oxidase (CcO) preparation, a resonance Raman band is observed at 755 cm-1 upon 647.1 nm excitation in resonance with an absorption band at 655 nm. Addition of cyanide eliminates the Raman band concomitant with loss of the absorption band at 655 nm. These results strongly suggest that the Raman band at 755 cm-1 originates from the O−O stretching mode of the bridging peroxide (Fe−O-−O-−Cu) in the O2 reduction site of the fully oxidized “as-isolated” CcO. Although the peroxide bridged structure has been proposed on the basis of X-ray crystallography and reductive titration experiments, the present vibrational spectroscopic analyses reveal conclusively the chemical nature of the bridging ligand at the O2 reduction site of the fully oxidized “as-isolated” bovine heart CcO.

Keywords

Cytochrome c oxidase Resting oxidized state O—O stretching mode Resonance Raman Bridging peroxide Proton pump Oxygen activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyama H, Muramoto K, Shinzawa-Itoh K, Hirata K, Yamashita E, Tsukihara T, Ogura T, Yoshikawa S (2009) Proc Natl Acad Sci USA 106:2165–2169CrossRefGoogle Scholar
  2. Beinert H, Hansen RE, Hartzell CR (1976) Biochim Biophys Acta 423:339–355CrossRefGoogle Scholar
  3. Bloch D, Belevich I, Jasaitis A, Ribacka C, Puustinen A, Verkhovsky MI, Wikstrom M (2004) Proc Natl Acad Sci USA 101:529–533CrossRefGoogle Scholar
  4. Cambridge Structural Database, 48 peroxide structuresGoogle Scholar
  5. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL (2003) Proc Nat Acad Sci USA 100:3635–3640CrossRefGoogle Scholar
  6. Ferguson-Miller S, Babcock GT (1996) Chem Rev 96:2889–2908CrossRefGoogle Scholar
  7. Han S, Takahashi S, Rousseau DL (2000) J Biol Chem 275:1910–1919CrossRefGoogle Scholar
  8. Kim E, Chufan EE, Kamaraj K, Karlin KD (2004) Chem Rev 104:1077–1133CrossRefGoogle Scholar
  9. Kitagawa T, Ogura T (1997) Progr Inorg Chem 45:431–479CrossRefGoogle Scholar
  10. Mitchell R, Mitchell P, Rich PR (1991) FEBS Lett 282:449CrossRefGoogle Scholar
  11. Mochizuki M, Aoyama H, Shinzawa-Itoh K, Usui T, Tsukihara T, Yoshikawa S (1999) J Biol Chem 274:33403–33411CrossRefGoogle Scholar
  12. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, Part B, 5th edn. Wiley, New YorkGoogle Scholar
  13. Ogura T, Yoshikawa S, Kitagawa T (1985) Biochemistry 24:7746–7752CrossRefGoogle Scholar
  14. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144CrossRefGoogle Scholar
  15. Van Gelder BF, Beinert H (1969) Biochim Biophys Acta 189:1–24CrossRefGoogle Scholar
  16. Yoshikawa S, Choc MG, O’Toole MC, Caughey WS (1977) J Biol Chem 252:5498–5508Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Miyuki Sakaguchi
    • 1
  • Kyoko Shinzawa-Itoh
    • 1
  • Shinya Yoshikawa
    • 1
  • Takashi Ogura
    • 1
  1. 1.Picobiology Institute, Department of Life Science, Graduate School of Life ScienceUniversity of HyogoAko-gunJapan

Personalised recommendations