Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 2, pp 99–109 | Cite as

Probing the effect of transport inhibitors on the conformation of the mitochondrial citrate transport protein via a site-directed spin labeling approach



The present investigation utilized the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy to identify the effect of citrate, the natural ligand, and transport inhibitors on the conformation of the yeast mitochondrial citrate transport protein (CTP) reconstituted in liposomal vesicles. Spin label was placed at six different locations within the CTP in order to monitor conformational changes that occurred near each of the transporter’s two substrate binding sites, as well as at more distant domains within the CTP architecture. We observed that citrate caused little change in the EPR spectra. In contrast the transport inhibitors 1,2,3-benzenetricarboxylate (BTC), pyridoxal 5′-phosphate (PLP), and compound 792949 resulted in spectral changes that indicated a decrease in the flexibility of the attached spin label at each of the six locations tested. The rank order of the immobilizing effect was compound 792949 > PLP > BTC. The four spin-label locations that report on the CTP substrate binding sites displayed the greatest changes in the EPR spectra upon addition of inhibitor. Furthermore, we found that when compound 792949 was added vectorially (i.e., extra- and/or intra-liposomally), the immobilizing effect was mediated nearly exclusively by external reagent. In contrast, upon addition of PLP vectorially, the effect was mediated to a similar extent from both the external and the internal compartments. In combination our data indicate that: i) citrate binding to the CTP substrate binding sites does not alter side-chain and/or backbone mobility in a global manner and is consistent with our expectation that both in the absence and presence of substrate the CTP displays the flexibility required of a membrane transporter; and ii) binding of each of the transport inhibitors tested locked multiple CTP domains into more rigid conformations, thereby exhibiting long-range inter-domain conformational communication. The differential vectorial effects of compound 792949 and PLP are discussed in the context of the CTP homology-modeled structure and potential mechanistic molecular explanations are given.


Citrate transporter Liposomes Mitochondria Membrane proteins Site-directed spin labeling Electron paramagnetic resonance Inhibitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aluvila S, Sun J, Harrison DHT, Walters DE, Kaplan RS (2010) Mol Pharm 77:26–34CrossRefGoogle Scholar
  2. Barnes JP, Liang Z, Mchaourab HS, Freed JH, Hubbell WL (1999) Biophys J 76:3298–3306CrossRefGoogle Scholar
  3. Berliner LJ, Grunwald J, Hankovszky HO, Hideg K (1982) Anal Biochem 119:450–455CrossRefGoogle Scholar
  4. Brunengraber H, Lowenstein JM (1973) FEBS Lett 36:130–132CrossRefGoogle Scholar
  5. Budil DE, Lee S, Saxena S, Freed JH (1996) J Magn Resn. A 120:155–189Google Scholar
  6. Columbus L, Hubbell WL (2002) Trends Biochem Sci 27:288–295CrossRefGoogle Scholar
  7. Conover TE (1987) Trends Biochem Sci 12:88–89CrossRefGoogle Scholar
  8. DeSensi SC, Rangel DP, Beth AH, Lybrand TP, Hustedt EJ (2008) Biophys J 94:3798–3809CrossRefGoogle Scholar
  9. Endemann G, Goetz PG, Edmond J, Brunengraber H (1982) J Biol Chem 257:3434–3440Google Scholar
  10. Feix JB, Klug CS (1998) In: Berliner LJ (ed) Biological magnetic resonance, vol. 14, Spin labeling: The next millennium. Plenum Press, New York, pp 251–281Google Scholar
  11. Heisterkamp N, Mulder MP, Langeveld A, Hoeve JT, Wang Z, Roe BA, Groffen J (1995) Genomics 29:451–456CrossRefGoogle Scholar
  12. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Curr Opin Struct Biol 8:649–656CrossRefGoogle Scholar
  13. Hubbell WL, Cafiso DS, Altenbach C (2000) Nat Struct Biol 7:735–739CrossRefGoogle Scholar
  14. Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB (2008) Am J Physiol Endocrinol Metab 295:E1287–E1297CrossRefGoogle Scholar
  15. Joseph JW, Jensen MV, Ilkayeva O, Palmieri F, Alarcon C, Rhodes CJ, Newgard CB (2006) J Biol Chem 281:35624–35632CrossRefGoogle Scholar
  16. Kaplan RS, Pedersen PL (1985) Anal Biochem 150:97–104CrossRefGoogle Scholar
  17. Kaplan RS, Morris HP, Coleman PS (1982) Cancer Res 42:4399–4407Google Scholar
  18. Kaplan RS, Mayor JA, Johnston N, Oliveira DL (1990a) J Biol Chem 265:13379–13385Google Scholar
  19. Kaplan RS, Oliveira DL, Wilson GL (1990b) Arch Biochem Biophys 280:181–191CrossRefGoogle Scholar
  20. Kaplan RS, Mayor JA, Wood DO (1993) J Biol Chem 268:13682–13690Google Scholar
  21. Kaplan RS, Mayor JA, Gremse DA, Wood DO (1995) J Biol Chem 270:4108–4114CrossRefGoogle Scholar
  22. Kaplan RS, Mayor JA, Brauer D, Kotaria R, Walters DE, Dean AM (2000a) J Biol Chem 275:12009–12016CrossRefGoogle Scholar
  23. Kaplan RS, Mayor JA, Kotaria R, Walters DE, Mchaourab HS (2000b) Biochemistry 39:9157–9163CrossRefGoogle Scholar
  24. Klare JP, Steinhoff H-J (2009) Photosynth Res 102:377–390CrossRefGoogle Scholar
  25. Klug CS, Feix JB (2008) Methods and applications of site-directed spin labeling EPR spectroscopy. In: Correia JJ, Detrich HW (eds) Methods in cell biology. Biophysical tools for biologists, volume one: in vitro techniques. Academic Press, New York, pp 617–658CrossRefGoogle Scholar
  26. Kotaria R, Mayor JA, Walters DE, Kaplan RS (1999) J Bioenerg Biomemb 31:543–549CrossRefGoogle Scholar
  27. Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Biochemistry 39:8396–8405CrossRefGoogle Scholar
  28. Lundblad RL (1991) Chemical reagents for protein modification. CRC, Boca RatonGoogle Scholar
  29. Ma C, Kotaria R, Mayor JA, Eriks LR, Dean AM, Walters DE, Kaplan RS (2004) J Biol Chem 279:1533–1540CrossRefGoogle Scholar
  30. Ma C, Kotaria R, Mayor JA, Remani S, Walters DE, Kaplan RS (2005) J Biol Chem 280:2331–2340CrossRefGoogle Scholar
  31. Ma C, Remani S, Kotaria R, Mayor JA, Walters DE, Kaplan RS (2006) Biochim Biophys Acta 1757:1271–1276CrossRefGoogle Scholar
  32. Ma C, Remani S, Sun J, Kotaria R, Mayor JA, Walters DE, Kaplan RS (2007) J Biol Chem 282:17210–17220CrossRefGoogle Scholar
  33. Mchaourab HS, Lietzow MA, Hideg MA, Hubbell WL (1996) Biochemistry 35:7692–7704CrossRefGoogle Scholar
  34. Palmieri F, Stipani I, Quagliariello E, Klingenberg M (1972) Eur J Biochem 26:587–594CrossRefGoogle Scholar
  35. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJ, Brandolin G (2003) Nature 426:39–44CrossRefGoogle Scholar
  36. Remani S, Sun J, Kotaria R, Mayor JA, Brownlee JM, Harrison DHT, Walters DE, Kaplan RS (2008) J Bioenerg Biomembr 40:577–585CrossRefGoogle Scholar
  37. Robinson BH, Williams GR, Halperin ML, Leznoff CC (1971) J Biol Chem 246:5280–5286Google Scholar
  38. Walters DE, Kaplan RS (2004) Biophys J 87:907–911CrossRefGoogle Scholar
  39. Watson JA, Lowenstein JM (1970) J Biol Chem 245:5993–6002Google Scholar
  40. Xu Y, Mayor JA, Gremse D, Wood DO, Kaplan RS (1995) Biochem Biophys Res Commun 207:783–789CrossRefGoogle Scholar
  41. Xu Y, Kakhniashvili DA, Gremse DA, Wood DO, Mayor JA, Walters DE, Kaplan RS (2000) J Biol Chem 275:7117–7124Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • June A. Mayor
    • 1
  • Jiakang Sun
    • 1
  • Rusudan Kotaria
    • 1
  • D. Eric Walters
    • 1
  • Kyoung Joon Oh
    • 1
  • Ronald S. Kaplan
    • 1
  1. 1.Department of Biochemistry & Molecular BiologyRosalind Franklin University of Medicine and Science, The Chicago Medical SchoolNorth ChicagoUSA

Personalised recommendations