Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 6, pp 517–526 | Cite as

Characterization of two cytochrome b 6 proteins from the cyanobacterium Gloeobacter violaceus PCC 7421

  • Carolin Dreher
  • Ruth Hielscher
  • Alexander Prodöhl
  • Petra Hellwig
  • Dirk Schneider
Article

Abstract

In the genome of the untypical cyanobacterium Gloeobacter violaceus PCC 7421 two potential cytochrome b 6 proteins PetB1 and PetB2 are encoded. Such a situation has not been observed in cyanobacteria, algae and higher plants before, and both proteins are not characterized at all yet. Here, we show that both apo-proteins bind heme with high affinity and the spectroscopic characteristics of both holo-proteins are distinctive for cytochrome b 6 proteins. However, while in PetB2 one histidine residue, which corresponds to H100 and serves as an axial ligand for heme b H in PetB1, is mutated, both PetB proteins bind two heme molecules with different midpoint potentials. To recreate the canonical heme b H binding cavity in PetB2 we introduced a histidine residue at the position corresponding to H100 in PetB1 and subsequently characterized the generated protein variant. The presented data indicate that two bona fide cytochrome b 6 proteins are encoded in Gloeobacter violaceus. Furthermore, the two petB genes of Gloeobacter violaceus are each organized in an operon together with a petD gene. Potential causes and consequences of the petB and petD gene heterogeneity are discussed.

Keywords

Assembly Cyanobacteria Cytochrome b6 Heme Cofactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) J Biol Chem 284:9861–9869CrossRefGoogle Scholar
  2. Barrick D (1994) Biochemistry 33:6546–6554CrossRefGoogle Scholar
  3. Cramer WA, Zhang H (2006) Biochim Biophys Acta 1757:339–345CrossRefGoogle Scholar
  4. Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Annu Rev Biochem 75:769–790CrossRefGoogle Scholar
  5. Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) Biochimica et Biophysica Acta (BBA)—Bioenergetics 723:202–218CrossRefGoogle Scholar
  6. Dreher C, Prodöhl A, Weber M, Schneider D (2007) FEBS Lett 581:2647–2651CrossRefGoogle Scholar
  7. Dreher C, Prodöhl A, Hielscher R, Hellwig P, Schneider D (2008) J Mol Biol 382:1057–1065CrossRefGoogle Scholar
  8. Finazzi G (2002) Biochemistry 41:7475–7482CrossRefGoogle Scholar
  9. Harbury HA, Cronin JR, Fanger MW, Hettinger TP, Murphy AJ, Myer YP, Vinogradov SN (1965) Proc Natl Acad Sci USA 54:1658–1664CrossRefGoogle Scholar
  10. Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Biochem Soc Trans 33:832–835CrossRefGoogle Scholar
  11. Hellwig P, Behr J, Ostermeier C, Richter OM, Pfitzner U, Odenwald A, Ludwig B, Michel H, Mäntele W (1998) Biochemistry 37:7390–7399CrossRefGoogle Scholar
  12. Kallas T (1994) In the molecular biology of cyanobacteria: the cytochrome b6f complex. In: Bryant DA (ed). Kluwer Academic Publishers, Dordrecht, pp 259–317Google Scholar
  13. Kallas T, Spiller S, Malkin R (1988) J Biol Chem 263:14334–14342Google Scholar
  14. Kamiya N, Okimoto Y, Ding Z, Ohtomo H, Shimizu M, Kitayama A, Morii H, Nagamune T (2001) Protein Eng 14:415–419CrossRefGoogle Scholar
  15. Kuras R, de Vitry C, Choquet Y, Girard-Bascou J, Culler D, Büschlen S, Merchant S, Wollman FA (1997) J Biol Chem 272:32427–32435CrossRefGoogle Scholar
  16. Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Science 302:1009–1014CrossRefGoogle Scholar
  17. Mitchell P (1975) FEBS Lett 59:137–139CrossRefGoogle Scholar
  18. Moss D, Nabedryk E, Breton J, Mäntele W (1990) Eur J Biochem 187:565–572CrossRefGoogle Scholar
  19. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) DNA Res 10:181–201CrossRefGoogle Scholar
  20. Newmyer SL, de Montellano PR (1996) J Biol Chem 271:14891–14896CrossRefGoogle Scholar
  21. Ozols J, Strittmatter P (1964) J Biol Chem 239:1018–1023Google Scholar
  22. Pond AE, Roach MP, Thomas MR, Boxer SG, Dawson JH (2000) Inorg Chem 39:6061–6066CrossRefGoogle Scholar
  23. Prodöhl A, Volkmer T, Finger C, Schneider D (2005) J Mol Biol 350:744–756CrossRefGoogle Scholar
  24. Prodöhl A, Dreher C, Hielscher R, Hellwig P, Schneider D (2007a) Protein Expr Purif 56:279–285CrossRefGoogle Scholar
  25. Prodöhl A, Weber M, Dreher C, Schneider D (2007b) Biochimie 89:1433–1437CrossRefGoogle Scholar
  26. Rippka R, Waterbury J, Cohen-Bazire G (1974) Arch Microbiol 100:419–436CrossRefGoogle Scholar
  27. Saint-Marcoux D, Wollman F-A, de Vitry C (2009) J Cell Biol 185:1195–1207CrossRefGoogle Scholar
  28. Scherer S (1990) Trends Biochem Sci 15:458–462CrossRefGoogle Scholar
  29. Schmetterer G (1994) In: Bryant DA (ed) The molecular biology of cyanobacteria: cyanobacterial respiration. Kluwer, Dordrecht, pp 409–435Google Scholar
  30. Schneider D, Schmidt CL (2005) Biochim Biophys Acta 1710:1–12Google Scholar
  31. Schneider D, Berry S, Rich P, Seidler A, Rögner M (2001) J Biol Chem 276:16780–16785CrossRefGoogle Scholar
  32. Schneider D, Skrzypczak S, Anemüller S, Schmidt CL, Seidler A, Rögner M (2002) J Biol Chem 277:10949–10954CrossRefGoogle Scholar
  33. Schneider D, Berry S, Volkmer T, Seidler A, Rögner M (2004) J Biol Chem 279:39383–39388CrossRefGoogle Scholar
  34. Schneider D, Volkmer T, Rögner M (2007) Res Microbiol 158:45–50CrossRefGoogle Scholar
  35. Schünemann V, Trautwein AX, Illerhaus J, Haehnel W (1999) Biochemistry 38:8981–8991CrossRefGoogle Scholar
  36. Soriano GM, Ponamarev MV, Carrell CJ, Xia D, Smith JL, Cramer WA (1999) J Bioenerg Biomembr 31:201–213CrossRefGoogle Scholar
  37. Stroebel D, Choquet Y, Popot JL, Picot D (2003) Nature 426:413–418CrossRefGoogle Scholar
  38. Tsunoyama Y, Bernat G, Dyczmons NG, Schneider D, Rögner M (2009) J Biol Chem 284:27875–27883CrossRefGoogle Scholar
  39. Volkmer T, Becker C, Prodöhl A, Finger C, Schneider D (2006) Biochim Biophys Acta 1758:1815–1822CrossRefGoogle Scholar
  40. Widger WR, Cramer WA, Herrmann RG, Trebst A (1984) Proc Natl Acad Sci USA 81:674–678CrossRefGoogle Scholar
  41. Yamashita E, Zhang H, Cramer WA (2007) J Mol Biol 370:39–52CrossRefGoogle Scholar
  42. Zhang H, Primak A, Cape J, Bowman MK, Kramer DM, Cramer WA (2004) Biochemistry 43:16329–16336CrossRefGoogle Scholar
  43. Zito F, Finazzi G, Joliot P, Wollman FA (1998) Biochemistry 37:10395–10403CrossRefGoogle Scholar
  44. Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman F-A (1999) EMBO J 18:2961–2969Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carolin Dreher
    • 1
    • 2
    • 3
  • Ruth Hielscher
    • 4
  • Alexander Prodöhl
    • 1
  • Petra Hellwig
    • 4
  • Dirk Schneider
    • 1
    • 3
    • 5
  1. 1.Institut für Biochemie und Molekularbiologie, ZBMZAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Fakultät für BiologieAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgFreiburgGermany
  4. 4.Institut de Chimie, UMR 7177, Laboratoire de spectroscopie vibrationnelle et électrochimie des biomoléculesUniversité de StrasbourgStrasbourgFrance
  5. 5.Institut für Pharmazie und BiochemieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations