Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 2, pp 143–150 | Cite as

Topological analysis of ATAD3A insertion in purified human mitochondria

  • Arnaud Hubstenberger
  • Nicolas Merle
  • Romain Charton
  • Gérard Brandolin
  • Denis RousseauEmail author
Article

Abstract

ATAD3 is a mitochondrial inner membrane-associated protein that has been predicted to be an ATPase but from which no associated function is known. The topology of ATAD3 in mitochondrial membranes is not clear and subject to controversy. A direct interaction of the N-terminal domain (amino-acids 44–247) with the mtDNA has been described, but the same domain has been reported to be sensitive to limited proteolysis in purified mitochondria. Furthermore, ATAD3 has been found in a large purified nucleoid complex but could not be cross-linked to the nucleoid. To resolve these discrepancies we used two immunological approaches to test whether the N-terminal (amino-acids 40–53) and the C-terminal (amino-acids 572–586) regions of ATAD3 are accessible from the cytosol. Using N-terminal and C-terminal specific anti-peptide antibodies, we carried out back-titration ELISA measurements and immuno-fluorescence analysis on freshly purified human mitochondria. Both approaches showed that the N-terminal region of ATAD3A is accessible to antibodies in purified mitochondria. The N-terminal region of ATAD3A is thus probably in the cytoplasm or in an accessible intermembrane space. On the contrary, the C-terminal region is not accessible to the antibody and is probably located within the matrix. These results demonstrate both that the N-terminal part of ATAD3A is outside the inner membrane and that the C-terminal part is inside the matrix.

Keywords

ATAD3 tob3 Mitochondrial AAA-ATPase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283(6):3665–3675CrossRefGoogle Scholar
  2. Brandolin G, Boulay F, Dalbon P, Vignais PV (1989) Orientation of the N-terminal region of ANT1. Biochemistry 28:1093–1100CrossRefGoogle Scholar
  3. Da Cruz S, Martinou JC (2008) Purification and proteomic analysis of the mouse liver mitochondrial inner membrane. Methods Mol 432:101–116CrossRefGoogle Scholar
  4. Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone PA, Martinou JC (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278(42):41566–41571CrossRefGoogle Scholar
  5. Gires O, Münz M, Schaffrik M, Kieu C, Rauch J, Ahlemann M, Eberle D, Mack B, Wollenberg B, Lang S, Hofmann T, Hammerschmidt W, Zeidler R (2004) Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology. Cell Mol Life Sci 61(10):1198–1207CrossRefGoogle Scholar
  6. He J, Mao CC, Reyes A, Sembongi H, Di Re M, Granycome C, Clippingdale AB, Fearnley IM, Harbour M, Robinson AJ, Reichelt S, Spelbrink JN, Walker JE, Holt IJ (2007) The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol 176(2):141–146CrossRefGoogle Scholar
  7. Hoffmann M, Bellance N, Rossignol R, Koopman WJ, Willems PH, Mayatepek E, Bossinger O, Distelmaier F (2009) C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS ONE 4(10):e7644CrossRefGoogle Scholar
  8. Hubstenberger A, Labourdette G, Baudier J, Rousseau D (2008) ATAD 3A and ATAD 3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro anti-oncogenic. Exp Cell Res 314(15):2870–2883CrossRefGoogle Scholar
  9. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321CrossRefGoogle Scholar
  10. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237CrossRefGoogle Scholar
  11. Piano F, Schetter AJ, Morton DG, Gunsalus KC, Reinke V, Kim SK, Kemphues KJ (2002) Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol 12:1959–1964CrossRefGoogle Scholar
  12. Schaffrik M, Mack B, Matthias C, Rauch J, Gires O (2006) Molecular characterization of the tumor-associated antigen AAA-TOB3. Cell Mol Life Sci 63(18):2162–2174CrossRefGoogle Scholar
  13. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1:E12CrossRefGoogle Scholar
  14. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E et al (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469CrossRefGoogle Scholar
  15. Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281(35):25791–25802Google Scholar
  16. Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4(10):R69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arnaud Hubstenberger
    • 2
  • Nicolas Merle
    • 1
  • Romain Charton
    • 1
  • Gérard Brandolin
    • 1
  • Denis Rousseau
    • 1
    Email author
  1. 1.Laboratoire Biochimie et Biophysique des Systèmes Intégrés Institut de Recherches en Technologies et Sciences pour le VivantGrenobleFrance
  2. 2.Department of Cell and Developmental BiologyUniversity of WisconsinAuroraUSA

Personalised recommendations