Journal of Bioenergetics and Biomembranes

, Volume 41, Issue 6, pp 517–521

Brain mitochondrial dysfunction and oxidative damage in Parkinson’s disease



Complex factors contribute to the appearance of Parkinson’s disease (PD), but with a constant mitochondrial involvement. There are two interdependent conditions in PD: brain mitochondrial dysfunction and brain mitochondrial oxidative damage. Mitochondrial dysfunction and reduced complex I activity are recognized in substantia nigra and in frontal cortex in PD patients. The molecular mechanism involved in the inactivation of complex I is likely accounted by the sum of ONOO mediated reactions, reactions with free radical intermediates of the lipid peroxidation process and amine-aldehyde adduction reactions. The inhibitory effects on complex I lead synergistically to denaturation of the protein structure and to further increases of O2 and ONOO production at the vicinity of complex I. An adaptive response in PD patients has been described with increases in mtNOS activity, mitochondrial mass and mitochondrial biogenesis. Mitochondrial dysfunction in the human frontal cortex is to be considered a factor contributing to impaired cognition in PD.


Complex I Frontal cortex mitochondria Brain mitochondria in PD mtNOS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JD Jr, Odunze IN (1991) Free Radic Biol Med 10:161–169CrossRefGoogle Scholar
  2. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) Nat Genet 38:515–517CrossRefGoogle Scholar
  3. Bougria M, Vitorica J, Cano J, Machado A (1995) Eur J Pharmacol 291:407–415CrossRefGoogle Scholar
  4. Boveris A, Cadenas E (2000) IUBMB Life 50:245–250CrossRefGoogle Scholar
  5. Boveris A, Chance B (1973) Biochem J 134:707–716Google Scholar
  6. Boveris A, Navarro A (2008) IUBMB Life 60:308–314CrossRefGoogle Scholar
  7. Boveris A, Stoppani AO (1971) Arch Biochem Biophys 142:150–156CrossRefGoogle Scholar
  8. Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Biochim Biophys Acta 1757:535–542CrossRefGoogle Scholar
  9. Brown GC, Borutaite V (2004) Biochim Biophys Acta 1658:44–49CrossRefGoogle Scholar
  10. Carreras MC, Franco MC, Peralta JG, Poderoso JJ (2004) Mol Aspects Med 25:125–139CrossRefGoogle Scholar
  11. Cassarino DS, Halvorsen EM, Swerdlow RH, Abramova NN, Parker WD Jr, Sturgill TW, Bennett JP Jr (2000) J Neurochem 74:1384–1392CrossRefGoogle Scholar
  12. Cutler RG (1991) Am J Clin Nutr 53:373S–379SGoogle Scholar
  13. de Lau LM, Breteler MM (2006) Lancet Neurol 5:525–535CrossRefGoogle Scholar
  14. Dennis J, Bennett JP Jr (2003) J Neurosci Res 72:76–88CrossRefGoogle Scholar
  15. Eve DJ, Nisbet AP, Kingsbury AE, Hewson EL, Daniel SE, Lees AJ, Marsden CD, Foster OJ (1998) Brain Res Mol Brain Res 63:62–71CrossRefGoogle Scholar
  16. Forno LS (1996) J Neuropathol Exp Neurol 55:259–272CrossRefGoogle Scholar
  17. Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML, Poderoso JJ (2000) Nitric Oxide 4:534–539CrossRefGoogle Scholar
  18. Gomez C, Bandez MJ, Navarro A (2007) Front Biosci 12:1079–1093CrossRefGoogle Scholar
  19. Gonzalez-Flecha B, Cutrin JC, Boveris A (1993) J Clin Invest 91:456–464CrossRefGoogle Scholar
  20. Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) J Neuropathol Exp Neurol 57:338–342CrossRefGoogle Scholar
  21. Hensley K, Kotake Y, Sang H, Pye QN, Wallis GL, Kolker LM, Tabatabaie T, Stewart CA, Konishi Y, Nakae D, Floyd RA (2000) Carcinogenesis 21:983–989CrossRefGoogle Scholar
  22. Ischiropoulos H (2009) Arch Biochem Biophys 484:117–121CrossRefGoogle Scholar
  23. Jellinger KA, Mizuno Y (2003) Parkinson’s disease. In: Dickson D (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 159–187Google Scholar
  24. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) J Neurosci 26:5256–5264CrossRefGoogle Scholar
  25. Kwong JQ, Beal MF, Manfredi G (2006) J Neurochem 97:1659–1675CrossRefGoogle Scholar
  26. Lam PY, Yin F, Hamilton RT, Boveris A, Cadenas E (2009) Free Radic Res 43:431–439CrossRefGoogle Scholar
  27. Liu Q, Raina AK, Smith MA, Sayre LM, Perry G (2003) Mol Aspects Med 24:305–313CrossRefGoogle Scholar
  28. Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain 115(Pt 2):333–342CrossRefGoogle Scholar
  29. McNamara P, Durso R, Harris E (2007) Cognit Neuropsychiatry 12:285–300CrossRefGoogle Scholar
  30. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Biochem Biophys Res Commun 163:1450–1455CrossRefGoogle Scholar
  31. Navarro A, Boveris A (2008) Adv Drug Deliv Rev 60:1534–1544CrossRefGoogle Scholar
  32. Navarro A, Torrejon R, Bandez MJ, Lopez-Cepero JM, Boveris A (2005) Am J Physiol Endocrinol Metab 289:E1101–E1109CrossRefGoogle Scholar
  33. Navarro A, Lopez-Cepero JM, Bandez MJ, Sanchez-Pino MJ, Gomez C, Cadenas E, Boveris A (2008) Am J Physiol Regul Integr Comp Physiol 294:R501–R509Google Scholar
  34. Navarro A, Boveris A, Bandez MJ, Sanchez-Pino MJ, Gomez C, Muntane G, Ferrer I (2009) Free Radic Biol Med 46:1574–1580CrossRefGoogle Scholar
  35. Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Proc Natl Acad Sci USA 101:16507–16512CrossRefGoogle Scholar
  36. Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA (2005) Neurobiol Dis 18:492–498CrossRefGoogle Scholar
  37. Raha S, Robinson BH (2000) Trends Biochem Sci 25:502–508CrossRefGoogle Scholar
  38. Riobo NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ (2001) Biochem J 359:139–145CrossRefGoogle Scholar
  39. Riobo NA, Schopfer FJ, Boveris AD, Cadenas E, Poderoso JJ (2002) Free Radic Biol Med 32:115–121CrossRefGoogle Scholar
  40. Schapira AH (2008) Lancet Neurol 7:97–109CrossRefGoogle Scholar
  41. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Lancet 1:1269CrossRefGoogle Scholar
  42. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990a) J Neurochem 54:823–827CrossRefGoogle Scholar
  43. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990b) J Neurochem 55:2142–2145CrossRefGoogle Scholar
  44. Tolmasoff JM, Ono T, Cutler RG (1980) Proc Natl Acad Sci USA 77:2777–2781CrossRefGoogle Scholar
  45. Turrens JF (2003) J Physiol 552:335–344CrossRefGoogle Scholar
  46. Valdez LB, Alvarez S, Lores-Arnaiz S, Schopfer F, Boveris A (2000) Free Radic Biol Med 29:349–356CrossRefGoogle Scholar
  47. Valdez LB, Zaobornyj T, Boveris A (2006) Biochim Biophys Acta 1757:166–172CrossRefGoogle Scholar
  48. Walker JE (1992) Q Rev Biophys 25:253–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, School of MedicineUniversity of CádizCádizSpain
  2. 2.School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations