Journal of Bioenergetics and Biomembranes

, Volume 41, Issue 6, pp 493–497 | Cite as

Parkinson’s disease and mitochondrial complex I: a perspective on the Ndi1 therapy



Mitochondrial impairment has been collecting more and more attention as a contributing factor to the etiology of Parkinson’s disease. Above all, the NADH-quinone oxidoreductase, complex I, of the respiratory chain seems to be most culpable. Complex I dysfunction is translated to an increased production of reactive oxygen species and a decreased energy supply. In the brain, the dopaminergic neurons are one of the most susceptible cells. Their death is directly linked to the disease apparition. Developing an effective gene therapy is challenged by harmful actions of reactive oxygen species. To overcome this problem a therapeutic candidate must be able to restore the NADH-quinone oxidoreductase activity regardless of how complex I is impaired. Here we discuss the potency of the yeast alternative NADH dehydrogenase, the Ndi1 protein, to reinstate the mitochondrial respiratory chain compensating for disabled complex I and the benefit Ndi1 brings toward retardation of Parkinson’s disease.


Gene therapy Complex I NDI1 Parkinson’s disease Neuroprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber-Singh J, Seo BB, Nakamaru-Ogiso E, Lau YS, Matsuno-Yagi A, Yagi T (2009) Rejuvenation Res. Published online (August 5, 2009)Google Scholar
  2. Bessis N, GarciaCozar FJ, Boissier MC (2004) Gene Ther 11(Suppl 1):S10–S17CrossRefGoogle Scholar
  3. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Nat Neurosci 3:1301–1306CrossRefGoogle Scholar
  4. Bulpitt CJ, Shaw K, Clifton P, Stern G, Davies JB, Reid JL (1985) Clin Neuropharmacol 8:175–183CrossRefGoogle Scholar
  5. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) Proc Natl Acad Sci USA 101:9103–9108CrossRefGoogle Scholar
  6. Choi WS, Kruse SE, Palmiter RD, Xia Z (2008) Proc Natl Acad Sci USA 105:15136–15141CrossRefGoogle Scholar
  7. Escobar-Khondiker M, Hollerhage M, Muriel MP, Champy P, Bach A, Depienne C, Respondek G, Yamada ES, Lannuzel A, Yagi T, Hirsch EC, Oertel WH, Jacob R, Michel PP, Ruberg M, Hoglinger GU (2007) J Neurosci 27:7827–7837CrossRefGoogle Scholar
  8. Gu M, Cooper JM, Taanman JW, Schapira AH (1998) Ann Neurol 44:177–186CrossRefGoogle Scholar
  9. Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Ann Neurol 37:714–722CrossRefGoogle Scholar
  10. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Lancet 369:2097–2105CrossRefGoogle Scholar
  11. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) J Neurosci 26:5256–5264CrossRefGoogle Scholar
  12. Kushnareva YE, Murphy AN, Andreyev AY (2002) Biochem J 368:545–553CrossRefGoogle Scholar
  13. Langston JW, Ballard PA Jr (1983) N Engl J Med 309:310Google Scholar
  14. Marella M, Seo BB, Matsuno-Yagi A, Yagi T (2007) J Biol Chem 282:24146–24156CrossRefGoogle Scholar
  15. Marella M, Seo BB, Nakamaru-Ogiso E, Greenamyre JT, Matsuno-Yagi A, Yagi T (2008) PLoS ONE 3:e1433CrossRefGoogle Scholar
  16. Mizuno Y, Saitoh T, Sone N (1987) Biochem Biophys Res Commun 143:294–299CrossRefGoogle Scholar
  17. Nicklas WJ, Vyas I, Heikkila RE (1985) Life Sci 36:2503–2508CrossRefGoogle Scholar
  18. Olanow CW, Tatton WG (1999) Annu Rev Neurosci 22:123–144CrossRefGoogle Scholar
  19. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) J Biol Chem 279:18614–18622CrossRefGoogle Scholar
  20. Ramsay RR, Singer TP (1986) J Biol Chem 261:7585–7587Google Scholar
  21. Richardson JR, Claudle WM, Guillot TS, Watson JL, Nakamaru-Ogiso E, Seo BB, Sherer TB, Greenamyre JT, Yagi T, Matsuno-Yagi A, Miller GW (2007) Toxicol Sci 95:196–204CrossRefGoogle Scholar
  22. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) J Neurochem 55:2142–2145CrossRefGoogle Scholar
  23. Seo BB, Nakamaru-Ogiso E, Flotte TR, Yagi T, Matsuno-Yagi A (2002) Mol Ther 6:336–341CrossRefGoogle Scholar
  24. Seo BB, Marella M, Yagi T, Matsuno-Yagi A (2006a) FEBS Lett 580:6105–6108CrossRefGoogle Scholar
  25. Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T (2006b) J Biol Chem 281:14250–14255CrossRefGoogle Scholar
  26. Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) J Neurochem 100:1469–1479Google Scholar
  27. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) J Neurosci 20:9207–9214Google Scholar
  28. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Science 304:1158–1160CrossRefGoogle Scholar
  29. Vila M, Przedborski S (2003) Nat Rev Neurosci 4:365–375CrossRefGoogle Scholar
  30. Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, Kao MC, Matsuno-Yagi A (2006) Rejuvenation Res 9:191–197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Experimental MedicineThe Scripps Research InstituteLa JollaUSA

Personalised recommendations