Journal of Bioenergetics and Biomembranes

, Volume 41, Issue 3, pp 251–257

Evolutionary alkaline transition in human cytochrome c

  • Tianlei Ying
  • Fangfang Zhong
  • Jin Xie
  • Yanjiao Feng
  • Zhong-Hua Wang
  • Zhong-Xian Huang
  • Xiangshi Tan
Article

Abstract

Conformational transitions in cytochrome c (cyt c) are being realized to be responsible for its multi-functions. Among a number of conformational transitions in cyt c, the alkaline transition has attracted much attention. The cDNA of human cyt c is cloned by RT-PCR and a high-effective expression system for human cyt c has been developed in this study. The equilibrium and kinetics of the alkaline transition of human cyt c have been systematically investigated for the first time, and compared with those of yeast and horse cyt c from an evolutionary perspective. The pKa value for the alkaline transition of human cyt c is apparently higher than that of yeast and horse. Kinetic studies suggest that it is increasingly difficult for the alkaline transition of cyt c from yeast, horse and human. Molecular modeling of human cyt c shows that the omega loop where the lysine residue is located apparently further away from heme in human cyt c than in yeast iso-1 and horse heart cyt c. These results regarding alkaline conformational transition provide valuable information for understanding the molecular basis for the biological multi-functions of cyt c.

Keywords

Human cytochrome c Alkaline transition pH-jump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abriata LA, Cassina A, Tortora V, Marin M, Souza JM, Castro L, Vila AJ, Radi R (2009) J Biol Chem 284:17–26CrossRefGoogle Scholar
  2. Assfalg M, Bertini I, Dolfi A, Turano P, Mauk AG, Rosell FI, Gray HB (2003) J Am Chem Soc 125:2913–2922CrossRefGoogle Scholar
  3. Autenrieth F, Tajkhorshid E, Baudry J, Luthey-Schulten Z (2004) J Comput Chem 25:1613–1622CrossRefGoogle Scholar
  4. Baddam S, Bowler BE (2005a) J Am Chem Soc 127:9702–9703CrossRefGoogle Scholar
  5. Baddam S, Bowler BE (2005b) Biochemistry 44:14956–14968CrossRefGoogle Scholar
  6. Baddam S, Bowler BE (2006) Biochemistry 45:4611–4619CrossRefGoogle Scholar
  7. Bai Y, Sosnick TR, Mayne L, Englander SW (1995) Science 269:192–197CrossRefGoogle Scholar
  8. Bandi S, Baddam S, Bowler BE (2007) Biochemistry 46:10643–10654CrossRefGoogle Scholar
  9. Barker PD, Mauk AG (1992) J Am Chem Soc 114:3619–3624CrossRefGoogle Scholar
  10. Battistuzzi G, Borsari M, De Rienzo F, Di Rocco G, Ranieri A, Sola M (2007) Biochemistry 46:1694–1702CrossRefGoogle Scholar
  11. Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE (2006) Biochemistry 45:4998–5009CrossRefGoogle Scholar
  12. Bushnell GW, Louie GV, Brayer GD (1990) J Mol Biol 214:585–595CrossRefGoogle Scholar
  13. Davidson VL (2000) Acc Chem Res 33:87–93CrossRefGoogle Scholar
  14. Davis LA, Schejter A, Hess GP (1974) J Biol Chem 249:2624–2632Google Scholar
  15. Degli Esposti M (2004) Biochem Soc Trans 32:493–495CrossRefGoogle Scholar
  16. Dopner S, Hildebrandt P, Rosell FI, Mauk AG (1998) J Am Chem Soc 120:11246–11255CrossRefGoogle Scholar
  17. Evans MJ, Scarpulla RC (1988) Proc Natl Acad Sci USA 85:9625–9629CrossRefGoogle Scholar
  18. Ferrer JC, Guillemette JG, Bogumil R, Inglis SC, Smith M, Mauk AG (1993) J Am Chem Soc 115:7507–7508CrossRefGoogle Scholar
  19. Grossman LI, Schmidt TR, Wildman DE, Goodman M (2001) Mol Phylogenet Evol 18:26–36CrossRefGoogle Scholar
  20. Guo ML, Bhaskar B, Li HY, Barrows TP, Poulos TL (2004) Proc Natl Acad Sci USA 101:5940–5945CrossRefGoogle Scholar
  21. Hagarman A, Duitch L, Schweitzer-Stenner R (2008) Biochemistry 47:9667–9677CrossRefGoogle Scholar
  22. Hildebrandt P, Heimburg T, Marsh D, Powell GL (1990) Biochemistry 29:1661–1668CrossRefGoogle Scholar
  23. Hoang L, Maity H, Krishna MM, Lin Y, Englander SW (2003) J Mol Biol 331:37–43CrossRefGoogle Scholar
  24. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(33–8):27–28Google Scholar
  25. Jeng WY, Chen CY, Chang HC, Chuang WJ (2002) J Bioenerg Biomembr 34:423–431CrossRefGoogle Scholar
  26. Jiang X, Wang X (2004) Annu Rev Biochem 73:87–106CrossRefGoogle Scholar
  27. Kagan VE, Tyurin VA, Jiang JF, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou MM, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232CrossRefGoogle Scholar
  28. Krishna MM, Lin Y, Rumbley JN, Englander SW (2003) J Mol Biol 331:29–36CrossRefGoogle Scholar
  29. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Cell 86:147–157CrossRefGoogle Scholar
  30. Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) J Comput Chem 25:1400–1415CrossRefGoogle Scholar
  31. Martinez RE, Bowler BE (2004) J Am Chem Soc 126:6751–6758CrossRefGoogle Scholar
  32. Olteanu A, Patel CN, Dedmon MM, Kennedy S, Linhoff MW, Minder CM, Potts PR, Deshmukh M, Pielak GJ (2003) Biochem Biophys Res Commun 312:733–740CrossRefGoogle Scholar
  33. Osheroff N, Borden D, Koppenol WH, Margoliash E (1980) J Biol Chem 255:1689–1697Google Scholar
  34. Pearce LL, Gartner AL, Smith M, Mauk AG (1989) Biochemistry 28:3152–3156CrossRefGoogle Scholar
  35. Pollock WBR, Rosell FI, Twitchett MB, Dumont ME, Mauk AG (1998) Biochemistry 37:6124–6131CrossRefGoogle Scholar
  36. Rodriguez-Roldan V, Garcia-Heredia JM, Navarro JA, Hervas M, De la Cerda B, Molina-Heredia FP, De la Rosa MA (2006) Biochem Biophys Res Commun 346:1108–1113CrossRefGoogle Scholar
  37. Rosell FI, Ferrer JC, Mauk AG (1998) J Am Chem Soc 120:11234–11245CrossRefGoogle Scholar
  38. Schmidt TR, Wildman DE, Uddin M, Opazo JC, Goodman M, Grossman LI (2005) Proc Natl Acad Sci USA 102:6379–6384CrossRefGoogle Scholar
  39. Shah R, Schweitzer-Stenner R (2008) Biochemistry 47:5250–5257CrossRefGoogle Scholar
  40. Silkstone GG, Cooper CE, Svistunenko D, Wilson MT (2005) J Am Chem Soc 127:92–99CrossRefGoogle Scholar
  41. Sinibaldi F, Fiorucci L, Patriarca A, Lauceri R, Ferri T, Coletta M, Santucci R (2008) Biochemistry 47:6928–6935CrossRefGoogle Scholar
  42. Wilson MT, Greenwood C (1996) In: Scott RA, Mauk AG (eds) Cytochrome c: a Multidisciplinary approach. University Science Books, Sausilito, pp 611–634Google Scholar
  43. Zhang ZL, Gerstein M (2003) Gene 312:61–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tianlei Ying
    • 1
  • Fangfang Zhong
    • 1
  • Jin Xie
    • 1
  • Yanjiao Feng
    • 1
  • Zhong-Hua Wang
    • 1
  • Zhong-Xian Huang
    • 1
  • Xiangshi Tan
    • 1
  1. 1.Department of Chemistry & Institutes of Biomedical SciencesFudan UniversityShanghaiChina

Personalised recommendations