Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 41, Issue 2, pp 195–214 | Cite as

Mitochondrial dynamics in heart cells: Very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells

  • Nathalie Beraud
  • Sophie Pelloux
  • Yves Usson
  • Andrey V. Kuznetsov
  • Xavier Ronot
  • Yves Tourneur
  • Valdur SaksEmail author
Article

Abstract

The arrangement and movement of mitochondria were quantitatively studied in adult rat cardiomyocytes and in cultured continuously dividing non beating (NB) HL-1 cells with differentiated cardiac phenotype. Mitochondria were stained with MitoTracker® Green and studied by fluorescent confocal microscopy. High speed scanning (one image every 400 ms) revealed very rapid fluctuation of positions of fluorescence centers of mitochondria in adult cardiomyocytes. These fluctuations followed the pattern of random walk movement within the limits of the internal space of mitochondria, probably due to transitions between condensed and orthodox configurational states of matrix and inner membrane. Mitochondrial fusion or fission was seen only in NB HL-1 cells but not in adult cardiomyocytes. In NB HL-1 cells, mitochondria were arranged as a dense tubular network, in permanent fusion, fission and high velocity displacements of ~90 nm/s. The differences observed in mitochondrial dynamics are related to specific structural organization and mitochondria-cytoskeleton interactions in these cells.

Keywords

Mitochondria Movement Cardiomyocytes NB HL-1 cells Image analysis Fluctuations Fusion Fission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material I

Visualization of mitochondria motion and arrangement with fluorescent probes (Mitotracker Green) staining mitochondrial membrane. Recordings were performed with high scanning speed confocal microscopy (400ms per frame). (AVI 3.48 mb)

Supplementary material II

The fluctuations of fluorescence intensity (Mitotracker Green) centers are superimposed with the high scanning speed confocal images showing localization of mitochondria in cells. The fluorescence from inside mitochondria is not homogenous and the position of fluorescence center of fluorescence intensity changes in a rather random manner, analogous to a random walk-type of movement (see text). Note that the fluctuations are always restricted to the space of a single mitochondrion. However, but fluctuations may differ among mitochondria from very localized to fluctuations distributed over significant intra-mitochondrial distance. (AVI 5.52 mb)

Supplementary material III

Visualization of effect of trypsin treatment (0.2 µM) on mitochondria arrangement on permeabilized cardiomyocytes. Mitochondria were marked with MitoTracker Red. (WMV 406 kb)

10863_2009_9214_MOESM4_ESM.avi (67.5 mb)
Supplementary material IV Visualisation of mitochondria network dynamics in NB HL-1 cells depending as a function of time t. Very dynamic mitochondria undergoing continuous fission and fusion can be seen, usually forming long and rapidly moving filament structures. (AVI 67.5 mb)

References

  1. Agutter PS, Malone PC, Wheatley DN (1995) Intracellular transport mechanisms: a critique of diffusion theory. J Theor Biol 176:261–272Google Scholar
  2. Agutter PS, Malone PC, Wheatley DN (2000) Diffusion theory in biology: a relic of mechanistic materialism. J Hist Biol 33:71–111Google Scholar
  3. Amchenkova AA, Bakeeva LE, Chentsov YS, Skulachev VP, Zorov DB (1988) Coupling membranes as energy-transmitting cables. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol 107:481–495Google Scholar
  4. Anesti V, Scorrano L (2006) The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta 1757:692–699Google Scholar
  5. Anmann T, Guzun R, Beraud N, Pelloux S, Kuznetsov AV, Kogerman L, Kaambre T, Sikk P, Paju K, Peet N, Seppet E, Ojeda C, Tourneur Y, Saks V (2006) Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells. Importance of cell structure/organization for respiration regulation. Biochim Biophys Acta 1757:1597–1606Google Scholar
  6. Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278:44735–44744Google Scholar
  7. Aon MA, Cortassa S, O’Rourke B (2004) Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA 101:4447–4452Google Scholar
  8. Aon MA, Cortassa SC, O’Rourke B (2006) The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 91:4317–4327Google Scholar
  9. Aon MA, Cortassa S, O’Rourke B (2007) On the network properties of mitochondria. In: Saks V (ed) Molecular system bioenergetics, energy for life. Wiley-VCH, Weinheim, Germany, pp 111–135Google Scholar
  10. Appaix F, Kuznetsov AV, Usson Y, Kay L, Andrienko T, Olivares J, Kaambre T, Sikk P, Margreiter R, Saks V (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiology 88:175–190Google Scholar
  11. Ball EH, Singer SJ (1982) Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci USA 79:123–126Google Scholar
  12. Benard G, Rossignol R (2008) Ultrastucture of mitochondria and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–1342Google Scholar
  13. Bereiter-Hahn J (1990) Behaviour of mitochondria in the living cell. Int Rev Cytol 122:1–63Google Scholar
  14. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219Google Scholar
  15. Birkedal R, Shiels HA, Vendelin M (2006) Three-dimensional mitochondrial arrangement in ventricular myocytes: from chaos to order. Am J Physiol Cell Physiol 291:C1148–C1158Google Scholar
  16. Capetenaki Y (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behaviour and function. Trends Cardiovasc Med 12:339–348Google Scholar
  17. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252Google Scholar
  18. Chance B, Yoshioka T (1966) Sustained oscillations of ionic constituents of mitochondria. Arch Biochem Biophys 117:51–465Google Scholar
  19. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192Google Scholar
  20. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med Suppl 1:S60–7Google Scholar
  21. Chung S, Dzeja PP, Faustino RS, Terzic A (2008) Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis. Ann N Y Acad Sci 1147:254–63CrossRefGoogle Scholar
  22. Claycomb WC, Lanson NA Jr, Stallworth BS, Eeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Nat Acad Sci USA 95:2979–2984Google Scholar
  23. Collins TJ, Bootman MD (2003) Mitochondria are morphologically heterogeneous within cells. J Exp Biol 206:1993–2000Google Scholar
  24. Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. Embo J 21:1616–1627Google Scholar
  25. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–2755Google Scholar
  26. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87:2060–73Google Scholar
  27. Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnóczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921Google Scholar
  28. Dedov VN, Roufogalis BD (1999) Organisation of mitochondria in living sensory neurons. FEBS Lett 456:171–174Google Scholar
  29. Dimmer KS, Scorrano L (2006) (De) constructing mitochondria: what for? Physiology (Bethesda) 21:233–241Google Scholar
  30. Dzeja PP, Chung S, Terzic A (2007) Integration of adenylate kinase and glycolytic and glycogenolytic circuits in cellular energetics. In: Saks V (ed) Molecular system bioenergetics, energy for life. Wiley-VCH, Weinheim, Germany, pp 265–301Google Scholar
  31. Eimre M, Paju K, Pelloux S, Beraud N, Roosimaa M, Kadaja L, Gruno M, Peet N, Orlova E, Remmelkoor R, Piirsoo A, Saks V, Seppet E (2008) Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim Biophys Acta 1777:514–524Google Scholar
  32. Einstein A (1905) Von der molerulärkinetichen theorie der wärme gefordete bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann Phys (Leipzig) 17:549–560Google Scholar
  33. Evtodienko YV (2000) Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible significance. Membr Cell Biol 14:1–17Google Scholar
  34. Floryk D, Houstĕk J (1999) Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep 19:27–34Google Scholar
  35. Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Circulation 104:1639–1645Google Scholar
  36. Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(2):32–39Google Scholar
  37. Gerencser AA, Nicholls DG (2008) Measurement of instantaneous vectors of organelle transport: mitochondrial transport and bioenergetics in hippocampal neurons. Biophys J 95:3079–3099Google Scholar
  38. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924Google Scholar
  39. Gordon AM, Regnier M, Homsher E (2001) Skeletal and cardiac muscle contractile activation: tropomyosin "rocks and rolls". News Physiol Sci 16:49–55Google Scholar
  40. Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 3:269–297Google Scholar
  41. Hackenbrock CR (1968a) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 37:345–369Google Scholar
  42. Hackenbrock CR (1968b) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci USA 61:598–605Google Scholar
  43. Hajnóczky G, Csordás G, Madesh M, Pacher P (2000) The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol 529:69–81Google Scholar
  44. Hattori T, Watanabe K, Uechi Y, Yoshioka H, Ohta Y (2005) Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping. Biophys J 88:2340–9Google Scholar
  45. Heggeness MH, Simon M, Singer SJ (1978) Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA 75:3863–3866Google Scholar
  46. Islam MA (2004) Einstein-Smoluchowski diffusion equation: a discussion. Physica Scripta 70:120–125Google Scholar
  47. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–80Google Scholar
  48. Kay L, Li Z, Mericskay M, Olivares J, Tranqui L, Fontaine E, Tiivel T, Sikk P, Kaambre T, Samuel JL, Rappaport L, Usson Y, Leverve X, Paulin D, Saks VA (1997) Study of regulation of mitochondrial respiration in vivo. an analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322:41–59Google Scholar
  49. Klingenberg M (2007) Transport viewed as a catalytic process. Biochimie 89:1042–1048Google Scholar
  50. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys acta 778:1978–2021Google Scholar
  51. Kuznetsov AV (2007) Structural organization and dynamics of mitochondria in the cells in vivo. In: Saks V (ed) Molecular system bioenergetics, energy for life. Wiley-VCH, Weinheim, Germany, pp 137–162Google Scholar
  52. Kuznetsov AV, Tiivel T, Sikk P, Käämbre T, Kay L, Daneshrad Z, Rossi A, Kadaja L, Peet N, Seppet E, Saks V (1996) Striking difference between slow and fast twitch muscles in the kinetics of regulation of respiration by ADP in the cells in vivo. Eur J Biochem 241:909–915Google Scholar
  53. Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim Biophys Acta Bioener\getics 1757:686–691Google Scholar
  54. Loew LM (1993) Confocal microscopy of potentiometric fluorescent dyes. Methods Cell Biol 38:194–209Google Scholar
  55. Mannella CA (2001) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762:140–147Google Scholar
  56. Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548Google Scholar
  57. Mannella CA, Buttle K, Marko M (1997) Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem Sci 22:37–38Google Scholar
  58. Margieantu D, Capaldi RA, Markus AH (2000) Dynamics of the mitochondrial reticulum in live cells using Fourier image correlation spectroscopy and digital video microscopy. Biophys J 79:1833–1849Google Scholar
  59. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–560Google Scholar
  60. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298Google Scholar
  61. O'Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV Jr (2003) Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 85:3350–3357Google Scholar
  62. Pacher P, Csordás P, Schneider T, Hajnóczky G (2000) Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria. J Physiol 529:553–564Google Scholar
  63. Pelloux S, Ojeda C, Tourneur Y (2005) An original method to quantify mitochondria movement in cultured cardiomyocytes. Comput Cardiol 32:813–816Google Scholar
  64. Pelloux S, Robillard J, Ferrera R, Bilbaut A, Ojeda C, Saks V, Ovize M, Tourneur Y (2006) Non-beating HL-1 cells for confocal microscopy: application to mitochondrial functions during cardiac preconditioning. Progr Biophys Mol Biol 90:270–298Google Scholar
  65. Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030–4Google Scholar
  66. Philbert J (2006) One and a half century of diffusion: Fick, Einstein, before and beyond. Diffus Fundam 4:6.1–6.19Google Scholar
  67. Presley AD, Fuller KM, Arriaga EA (2003) MitoTracker Green labelling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr 793:141–150Google Scholar
  68. Rasmussen UF, Vielwerth SE, Rasmussen HN (2004) Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps. Comp Biochem Physiol A Mol Integr Physiol 137:435–46Google Scholar
  69. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766Google Scholar
  70. Romashko DN, Marban E, O’Rourke B (1998) Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci 95:1618–1623Google Scholar
  71. Rostovtseva TK, Bezrukov S (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170Google Scholar
  72. Rostovtseva TK, Hassanzadeh E, Sheldon K, Monge C, Saks V, Bezrukov SM, Sackett S (2008) New role for an old protein: tubulin binding blocks the mitochondrial outer membrane voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA 105:18746–18751Google Scholar
  73. Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T, Tiivel T (1995) Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27:625–645Google Scholar
  74. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E (2001) Intracellular energetic units in red muscle cells. Biochem J 356:643–657Google Scholar
  75. Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, Kaambre T, Sikk P, Lemba M, Vendelin M (2003) Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 84:3436–3456Google Scholar
  76. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of frank-starling law. J Physiol 571:253–273Google Scholar
  77. Saks V, Monge C, Anmann T, Dzeja P (2007) Integrated and organized cellular energetic systems: theories of cell energetics, compartmentation and metabolic channeling. In: Saks V (ed) Molecular system bioenergetics, energy for life. Wiley-VCH, Weinheim, Germany, pp 59–110Google Scholar
  78. Saks V, Beraud N, Wallimann T (2008) Metabolic compartmentation−a system level property of muscle cells: real problems of diffusion in living cells. Int J. Mol Sci 9:751–767Google Scholar
  79. Scherer B, Klingenberg M (1974) Demonstration of the relationship between adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine 5’-diphosphate. Biochem 13:161–170Google Scholar
  80. Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appaix F, Braun U, Eimre M, Saks VA (2001) Functional comlexes of mitochondria with Ca, MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504:379–395Google Scholar
  81. Shen T, Zhen M, Cao C, Chen C, Tang J, Zhang W, Cheng H, Chen KH, Xiao RP (2007) Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem 282:23354–23361Google Scholar
  82. Skulachev VP (1990) Power transmission along biological membranes. J Membr Biol 114:97–112Google Scholar
  83. Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular powertransmitting cables. Trends in Biochem Sci 26:23–29Google Scholar
  84. Skulachev VP, Bakeeva LE, Chernyak BV, Domnina LV, Minin AA, Pletjushkina OY, Saprunova VB, Skulachev IV, Tsyplenkova VG, Vasiliev JM, Yaguzhinsky LS, Zorov DB (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256–257:341–58Google Scholar
  85. Sommer JR, Jennings RB (1986) Ultrastructure of cardiac muscle. In: Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan H (eds) The heart and cardiovascular system. Scientific foundations. Raven, New York, pp 61–100Google Scholar
  86. Stoner CD, Sirak HD (1973) Adenine nucleotide induced contraction of the inner mitochondrial membrane. J Cell Biol 56:51–64Google Scholar
  87. Sun CN, Dhalla NS, Olson RE (1969) Formation of gigantic mitochondria in hypoxic isolated perfused rat hearts. Experimentia 25:763–764Google Scholar
  88. Twig G, Graf SA, Wikstrom JD, Mohamed H, Haigh SE, Elorza A, Deutsch M, Zurgil N, Reynolds N, Shirihai OS (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol 291:C176–C184Google Scholar
  89. Twig G, Hyde B, And Shirihai OS (2008b) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097Google Scholar
  90. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008a) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–46Google Scholar
  91. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480Google Scholar
  92. Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453Google Scholar
  93. Vendelin M, Birkedal R (2008) Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am J Physiol Cell Physiol 295:C1302–C1315Google Scholar
  94. Vendelin M, Eimre M, Seppet E, Peet N, Andrienko T, Lemba M, Engelbrecht J, Seppet EK, Saks VA (2004) Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle. Mol Cell Biochem 256(257):229–241Google Scholar
  95. Vendelin M, Beraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA (2005) Mitochondrial regular arrangement in muscle cells: a ‘‘crystal-like’’ pattern. Am J Physiol Cell Physiol 288:C757–767Google Scholar
  96. Vergun O, Votyakova TV, Reynolds IJ (2003) Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. Biophys J 85:3358–3366Google Scholar
  97. von Smoluchowski M (1906) Zür kinetichen theorie der brownschen molekulärbewegung und der suspensionen. Ann Der Physik 21:756–780Google Scholar
  98. Wallimann T, Tokarska-Schlattner M, Neumann D, Epand R, Andres RH, Widmer HR, Hornemann T, Saks V, Agarkova I, Schlattner U (2007) The phosphocreatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals, and enhancement by creatine supplementation. In: Saks V (ed) Molecular system bioenergetics, energy for life. Wiley-VCH, Weinheim, Germany, pp 195–264Google Scholar
  99. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Wang W, Mattson MP, Kao JPY, Lakatta EK, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Superoxide flashes in single mitochondrion. Cell 134:279–290Google Scholar
  100. Weber NE, Blair PV (1970) Ultrastructural studies of beef heart mitochondria. II. Adenine nucleotide induced modifications of mitochondrial morphology. Biochem Biophys Res Commun 41:821–829Google Scholar
  101. Weiss JN, Yang L, Qu Z (2006) Network perspectives of cardiovascular metabolism. J Lipid Research 47:2355–2366Google Scholar
  102. White SM, Constantin PE, Claycomb WC (2006) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 286:H823–829Google Scholar
  103. Wiseman PW, Petersen NO (1999) Image correlation spectroscopy. II. Optimisation for ultrasensitive detection of pre-existing platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys J 76:963–977Google Scholar
  104. Wiseman PW, Brown CM, Webb DJ, Hebert B, Johnson NL, Squier JA, Ellisman MH, Horwitz AF (2005) Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy. J Cell Sci 117:5521–5534Google Scholar
  105. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497Google Scholar
  106. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014Google Scholar
  107. Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ (2004) Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ Res 95:239–252Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nathalie Beraud
    • 1
    • 7
  • Sophie Pelloux
    • 2
  • Yves Usson
    • 3
  • Andrey V. Kuznetsov
    • 4
  • Xavier Ronot
    • 5
  • Yves Tourneur
    • 2
  • Valdur Saks
    • 1
    • 6
    • 8
    Email author
  1. 1.INSERM U884, Laboratory of Fundamental and Applied BioenergeticsJoseph Fourier UniversityGrenobleFrance
  2. 2.INSERM U886, Centre Commun de Quantimétrie, Université Lyon 1Université de LyonLyonFrance
  3. 3.CNRS UMR5525, TIMC-IMAGJoseph Fourier UniversityGrenobleFrance
  4. 4.D.Swarovski Research Laboratory, Department of Transplant SurgeryInnsbruck Medical UniversityInnsbruckAustria
  5. 5.Laboratoire de Dynamique Cellulaire, UMR 5525, UJF-CNRS-INPG-EPHE-ENVLGrenobleFrance
  6. 6.Laboratory of BioenergeticsNational Institute of Chemical Physics and BiophysicsTallinnEstonia
  7. 7.Laboratory of Systems Biology, Institute of CyberneticsTallinn Technical UniversityTallinnEstonia
  8. 8.Laboratory of BioenergeticsJoseph Fourier UniversityGrenoble Cedex 9France

Personalised recommendations