Advertisement

Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues

  • Lukáš Alán
  • Katarína Smolková
  • Eva Kronusová
  • Jitka Šantorová
  • Petr JežekEmail author
Article

Abstract

Existing controversies led us to analyze absolute mRNA levels of mitochondrial uncoupling proteins (UCP1-UCP5). Individual UCP isoform mRNA levels varied by up to four orders of magnitude in rat and mouse tissues. UCP2 mRNA content was relatively high (0.4 to 0.8 pg per 10 ng of total mRNA) in rat spleen, rat and mouse lung, and rat heart. Levels of the same order of magnitude were found for UCP3 mRNA in rat and mouse skeletal muscle, for UCP4 and UCP5 mRNA in mouse brain, and for UCP2 and UCP5 mRNA in mouse white adipose tissue. Significant differences in pattern were found for rat vs. mouse tissues, such as the dominance of UCP3/UCP5 vs. UCP2 transcript in mouse heart and vice versa in rat heart; or UCP2 (UCP5) dominance in rat brain contrary to 10-fold higher UCP4 and UCP5 dominance in mouse brain. We predict high antioxidant/antiapoptotic UCP function in tissues with higher UCP mRNA content.

Keywords

Mitochondrial uncoupling proteins UCP2 UCP3 UCP4 UCP5 Absolute mRNA levels 

References

  1. Adams AE, Carroll AM, Fallon PG, Porter RK (2008a) Biochim Biophys Acta 1777:772–776CrossRefGoogle Scholar
  2. Adams AE, Hanrahan O, Nolan DN, Voorheis HP, Fallon P, Porter RK (2008b) Biochim Biophys Acta 1777:115–117CrossRefGoogle Scholar
  3. Affourtit C, Crichton PG, Parker N, Brand MD (2007) Novartis Found Symp 287:70–80CrossRefGoogle Scholar
  4. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Nat Genet 26:435–439CrossRefGoogle Scholar
  5. Beck V, Jabůrek M, Demina T, Rupprecht A, Porter RK, Ježek P, Pohl EE (2007) FASEB J 21:1137–1144CrossRefGoogle Scholar
  6. Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, Wen L, Liu S, Ji LL, Zhang Y (2008) Free Radic Biol Med 44:1373–1381CrossRefGoogle Scholar
  7. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP (1997) FEBS Lett 408:39–42CrossRefGoogle Scholar
  8. Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J (2006) Biochim Biophys Acta 1757:449–458CrossRefGoogle Scholar
  9. Carroll AM, Haines LR, Pearson TW, Fallon PG, Walsh CM, Brennan CM, Breen EP, Porter RK (2005) J Biol Chem 280:15534–15543CrossRefGoogle Scholar
  10. Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP (2006) J Biol Chem 281:37391–37403CrossRefGoogle Scholar
  11. Chomczynski P, Sacchi N (1987) Anal Biochem 162:156–159CrossRefGoogle Scholar
  12. Dlasková A, Hlavatá L, Ježek P (2008a) Int J Biochem Cell Biol 40:2098–2109CrossRefGoogle Scholar
  13. Dlasková A, Hlavatá L, Ježek J, Ježek P (2008b) Int J Biochem Cell Biol 40:1792–1805CrossRefGoogle Scholar
  14. Dlasková A, Špaček T, Škobisová E, Šantorová J, Ježek P (2006) Biochim Biophys Acta 1757:467–473CrossRefGoogle Scholar
  15. Esteves TC, Brand MD (2005) Biochim Biophys Acta 1709:35–44CrossRefGoogle Scholar
  16. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Nat Genet 15:269–272CrossRefGoogle Scholar
  17. Giardina TM, Steer JH, Lo SZ, Joyce DA (2008) Biochim Biophys Acta 1777:118–129CrossRefGoogle Scholar
  18. Gimeno RE, Dembski M, Weng X, Shyjan AW, Gimeno CJ, Iris F, Ellis SJ, Deng N, Woolf EA, Tartaglia LA (1997) Diabetes 46:900–906CrossRefGoogle Scholar
  19. Hanák P, Ježek P (2001) FEBS Lett 495:137–141CrossRefGoogle Scholar
  20. Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB, Ho SL (2006) J Neurosci Res 84:1358–1366CrossRefGoogle Scholar
  21. Ho PW, Chan DY, Kwok KH, Chu AC, Ho JW, Kung MH, Ho SL (2005) J Neurosci Res 81:261–268CrossRefGoogle Scholar
  22. Hurtaud C, Gelly C, Bouillaud F, Lévi-Meyrueis C (2006) Cell Mol Life Sci 63:1780–1789CrossRefGoogle Scholar
  23. Hurtaud C, Gelly C, Chen Z, Lévi-Meyrueis C, Bouillaud F (2007) Cell Mol Life Sci 64:1853–1860CrossRefGoogle Scholar
  24. Jabůrek M, Miyamoto S, Di Mascio P, Garlid KD, Ježek P (2004) J Biol Chem 279:53097–53102CrossRefGoogle Scholar
  25. Ježek P, Hlavatá L (2005) Int J Biochem Cell Biol 37:2478–2503CrossRefGoogle Scholar
  26. Ježek P, Ježek J (2003) FEBS Lett 534:15–25CrossRefGoogle Scholar
  27. Ježek P, Urbánková E (2000) IUBMB Life 49:63–70Google Scholar
  28. Ježek P, Žáčková M, Růžička M, Škobisová E, Jabůrek M (2004) Physiol Res 53:S199–S211Google Scholar
  29. Kim-Han JS, Reichert SA, Quick KL, Dugan LL (2001) J Neurochem 79:658–668CrossRefGoogle Scholar
  30. Klingenspor M, Fromme T, Hughes DA Jr, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, Jastroch M (2008) Biochim Biophys Acta 1777:637–641CrossRefGoogle Scholar
  31. Lengacher S, Magistretti PJ, Pellerin LJ (2004) J Cereb Blood Flow Metab 24:780–788CrossRefGoogle Scholar
  32. Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP (2006) Neuromolecular Med 8:389–414CrossRefGoogle Scholar
  33. Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH, Pan G (1999) FEBS Lett 443:326–330CrossRefGoogle Scholar
  34. McLeod CJ, Aziz A, Hoyt RF Jr, McCoy JP Jr, Sack MM (2005) J Biol Chem 280:33470–33476CrossRefGoogle Scholar
  35. Mori S, Yoshizuka N, Takizawa M, Takema Y, Murase T, Tokimitsu I, Saito M (2008) J Invest Dermatol 128:1894–1900CrossRefGoogle Scholar
  36. Nakase T, Yoshida Y, Nagata K (2007) Neuropathology 27:442–447CrossRefGoogle Scholar
  37. Naudí A, Caro P, Jové M, Gómez J, Boada J, Ayala V, Portero-Otín M, Barja G, Pamplona R (2007) Rejuvenation Res 10:473–484CrossRefGoogle Scholar
  38. Pecqueur C, Alves-Guerra M-C, Gelly C, Lévi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B (2001) J Biol Chem 276:8705–8712CrossRefGoogle Scholar
  39. Růžička M, Škobisová E, Dlasková A, Šantorová J, Smolková K, Špaček T, Žáčková M, Modrianský M, Ježek P (2005) Int J Biochem Cell Biol 37:809–821CrossRefGoogle Scholar
  40. Sale MM, Hsu FC, Palmer ND, Gordon CJ, Keene KL, Borgerink HM, Sharma AJ, Bergman RN, Taylor KD, Saad MF, Norris JM (2007) BMC Endocr Disord 30:7–1Google Scholar
  41. Sanchis D, Fleury C, Chomiki N, Goubern M, Huang Q, Neverova M, Grégoire F, Easlick J, Raimbault S, Lévi-Meyrueis C, Miroux B, Collins S, Seldin M, Richard D, Warden C, Bouillaud F, Ricquier D (1998) J Biol Chem 273:34611–34615CrossRefGoogle Scholar
  42. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB (1997) Biochem. Biophys. Res. Commun 235:79–82CrossRefGoogle Scholar
  43. Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH, Pan G (2000) FASEB J 14:1611–1618CrossRefGoogle Scholar
  44. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Cell 105:745–755CrossRefGoogle Scholar
  45. Zhang M, Wang B, Ni YH, Liu F, Fei L, Pan XQ, Guo M, Chen RH, Guo XR (2006) Life Sci 79:1428–1435CrossRefGoogle Scholar
  46. Žáčková M, Škobisová E, Urbánková E, Ježek P (2003) J Biol Chem 278:20761–20769CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lukáš Alán
    • 1
  • Katarína Smolková
    • 1
  • Eva Kronusová
    • 1
  • Jitka Šantorová
    • 1
  • Petr Ježek
    • 1
    • 2
    Email author
  1. 1.Department of Membrane Transport Biophysics, No.75, Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Dept. No.75, Membrane Transport Biophysics, Institute of PhysiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations