Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 40, Issue 5, pp 541–549 | Cite as

A chemically explicit model for the mechanism of proton pumping in heme–copper oxidases

  • Martyn A. Sharpe
  • Shelagh Ferguson-Miller
Article

Abstract

A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.

Keywords

Proton pumping Heme–copper oxidases Chemiosmotic principles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini E, Brunori M, Colosimo A, Greenwood C, Wilson MT (1977) Oxygen pulsed cytochrome c oxidase—functional properties and catalytic relevance. Proc Natl Acad Sci USA 74:3128–3132CrossRefGoogle Scholar
  2. Aoyama H, Muramoto K, Hirata K, Suga M, Yamashita E, Shinzawa-Itoh K, Ogura T, Tsukihara T, Yoshikawa S (2008) A peroxide bridge between the two metals in the dinuclear center of the fully oxidized cytochrome c oxidase. Biochim Biophys Acta (BBA)—Bioenerg 1777:S69–S69CrossRefGoogle Scholar
  3. Artzatbanov VY, Konstantinov AA, Skulachev VP (1978) Involvement of intra-mitochondrial protons in redox reactions of cytochrome a. FEBS Lett 87:180–185CrossRefGoogle Scholar
  4. Bailey JA, Tomson FL, Mecklenburg SL, MacDonald GM, Katsonouri A, Puustinen A, Gennis RB, Woodruff WH, Dyer RB (2002) Time-resolved step-scan Fourier transform infrared spectroscopy of the CO adducts of bovine cytochrome c oxidase and of cytochrome bo(3) from Escherichia coli. Biochemistry 41:2675–2683CrossRefGoogle Scholar
  5. Belevich I, Verkhovsky MI (2008) Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10:1–29CrossRefGoogle Scholar
  6. Bloch D, Belevich I, Jasaitis A, Ribacka C, Puustinen A, Verkhovsky MI, Wikstrom M (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc Natl Acad Sci USA 101:529–533CrossRefGoogle Scholar
  7. Blomberg MRA, Siegbahn PEM, Babcock GT, Wikstrom M (2000a) Modeling cytochrome oxidase: a quantum chemical study of the O–O bond cleavage mechanism. J Am Chem Soc 122:12848–12858CrossRefGoogle Scholar
  8. Blomberg MRA, Siegbahn PEM, Babcock GT, Wikstrom M (2000b) O–O bond splitting mechanism in cytochrome oxidase. J Inorg Biochem 80:261–269CrossRefGoogle Scholar
  9. Brand SE, Rajagukguk S, Ganesan K, Geren L, Fabian M, Han D, Gennis RB, Durham B, Millett F (2007) A new ruthenium complex to study single-electron reduction of the pulsed OH state of detergent-solubilized cytochrome oxidase. Biochemistry 46:14610–14618CrossRefGoogle Scholar
  10. Branden G, Pawate AS, Gennis RB, Brzezinski P (2006) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103:317–322CrossRefGoogle Scholar
  11. Brunori M, Colosimo A, Rainoni G, Wilson MT, Antonini E (1979) Functional intermediates of cytochrome oxidase—role of pulsed oxidase in the pre-steady state and steady-state reactions of the beef enzyme. J Biol Chem 254:769–775Google Scholar
  12. Brunori M, Colosimo A, Sarti P, Antonini E, Wilson MT (1981) Pulsed cytochrome-oxidase may be produced without the advent of dioxygen. FEBS Lett 126:195–198CrossRefGoogle Scholar
  13. Brzezinski P, Adelroth P (1998) Pathways of proton transfer in cytochrome c oxidase. J Bioenerg Biomembranes 30:99–107CrossRefGoogle Scholar
  14. Bu YX, Cukier RI (2005) Structural character and energetics of tyrosyl radical formation by electron/proton transfers of a covalently linked histidine-tyrosine: a model for cytochrome c oxidase. J Phys Chem B 109:22013–22026CrossRefGoogle Scholar
  15. Buse G, Soulimane T, Dewor M, Meyer HE, Bluggel M (1999) Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase. Protein Sci 8:985–990CrossRefGoogle Scholar
  16. Busenlehner LS, Branden G, Namslauer I, Brzezinski P, Armstrong RN (2008) Structural elements involved in proton translocation by cytochrome c oxidase as revealed by backbone amide hydrogen-deuterium exchange of the E286H mutant. Biochemistry 47:73–83CrossRefGoogle Scholar
  17. Cappuccio JA, Ayala I, Elliott GI, Szundi I, Lewis J, Konopelski JP, Barry BA, Einarsdottir O (2002) Modeling the active site of cytochrome oxidase: synthesis and characterization of a cross-linked histidine-phenol. J Am Chem Soc 124:1750–1760CrossRefGoogle Scholar
  18. Fadda E, Chakrabarti N, Pomes R (2005) Acidity of a Cu-bound histidine in the binuclear center of cytochrome c oxidase. J Phys Chem B 109:22629–22640CrossRefGoogle Scholar
  19. Fadda E, Yu CH, Pomes R (2008) Electrostatic control of proton pumping in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1777:277–284CrossRefGoogle Scholar
  20. Fann YC, Ahmed I, Blackburn NJ, Boswell JS, Verkhovskaya ML, Hoffman BM, Wikstrom M (1995) Structure of CuB in the binuclear heme–copper center of the cytochrome aa3-type quinol oxidase from Bacillus subtilis—an ENDOR and EXAFS study. Biochemistry 34:10245–10255CrossRefGoogle Scholar
  21. Fetter J, Sharpe M, Qian J, Mills D, FergusonMiller S, Nicholls P (1996) Fatty acids stimulate activity and restore respiratory control in a proton channel mutant of cytochrome c oxidase. FEBS Lett 393:155–160CrossRefGoogle Scholar
  22. Gennis RB (2004) Coupled proton and electron transfer reactions in cytochrome oxidase. Front Biosci 9:581–591CrossRefGoogle Scholar
  23. Heberle J, Nyquist RM, Heitbrink D, Bolwien C, Gennis RB (2004) Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase: controversies on the role of E286. Biochim Biophys Acta Bioenerg 1658:25–25Google Scholar
  24. Hosler JP, Shapleigh JP, Mitchell DH, Kim Y, Pressler MA, Georgiou C, Babcock GT, Alben JO, FergusonMiller S, Gennis RB (1996) Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site. Biochemistry 35:10776–10783CrossRefGoogle Scholar
  25. Jancura D, Berka V, Antalik M, Bagelova J, Gennis RB, Palmer G, Fabian M (2006) Spectral and kinetic equivalence of oxidized cytochrome c oxidase as isolated and “activated” by reoxidation. J Biol Chem 281:30319–30325CrossRefGoogle Scholar
  26. Ji H, Rousseau DL, Yeh SR (2008) Heme–heme communication during the alkaline-induced structural transition in cytochrome c oxidase. J Inorg Biochem 102:414–426CrossRefGoogle Scholar
  27. Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis RB (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94:9085–9090CrossRefGoogle Scholar
  28. Mills DA, Ferguson-Miller S (2003) Understanding the mechanism of proton movement linked to oxygen reduction in cytochrome c oxidase: lessons from other proteins. FEBS Lett 545:47–51CrossRefGoogle Scholar
  29. Mills DA, Hosler JP (2005) Slow proton transfer through the pathways for pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. Biochemistry 44:4656–4666CrossRefGoogle Scholar
  30. Mills DA, Florens L, Hiser C, Qian J, Ferguson-Miller S (2000) Where is ‘outside’ in cytochrome c oxidase and how and when do protons get there? Biochim Biophys Acta Bioenerg 1458:180–187CrossRefGoogle Scholar
  31. Mochizuki M, Aoyama H, Shinzawa-Itoh K, Usui T, Tsukihara T, Yoshikawa S (1999) Quantitative reevaluation of the redox active sites of crystalline bovine heart cytochrome c oxidase. J Biol Chem 274:33403–33411CrossRefGoogle Scholar
  32. Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-O S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci USA 104:7881–7886CrossRefGoogle Scholar
  33. Nyquist RM, Heitbrink D, Bolwien C, Gennis RB, Heberle J (2003) Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase. Proc Natl Acad Sci USA 100:8715–8720CrossRefGoogle Scholar
  34. Olsson MHM, Warshel A (2006) Monte Carlo simulations of proton pumps: on the working principles of the biological valve that controls proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103:6500–6505CrossRefGoogle Scholar
  35. Pisliakov AV, Sharma PK, Chu ZT, Haranczyk M, Warshel A (2008) Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Proc Natl Acad Sci USA 105:7726–7731CrossRefGoogle Scholar
  36. Popovic DM, Stuchebrukhov AA (2004) Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: coulomb pump model with kinetic gating. FEBS Lett 566:126–130CrossRefGoogle Scholar
  37. Popovic DM, Quenneville J, Stuchebrukhov AA (2005) DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase. J Phys Chem B 109:3616–3626CrossRefGoogle Scholar
  38. Powers L, Lauraeus M, Reddy KS, Chance B, Wikstrom M (1994) Structure of the binuclear heme iron-copper site in the quinol-oxidizing cytochrome aa(3), from Bacillus subtilis. Biochim Biophys Acta Bioenerg 1183:504–512CrossRefGoogle Scholar
  39. Proshlyakov DA, Pressler MA, Babcock GT (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci USA 95:8020–8025CrossRefGoogle Scholar
  40. Proshlyakov DA, Pressler MA, DeMaso C, Leykam JF, DeWitt DL, Babcock GT (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science 290:1588–1591CrossRefGoogle Scholar
  41. Qin L, Mills DA, Hiser C, Murphree A, Garavito RM, Ferguson-Miller S, Hosler J (2007) Crystallographic location and mutational analysis of Zn and Cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome c oxidase. Biochemistry 46:6239–6248CrossRefGoogle Scholar
  42. Rauhamaki V, Baumann M, Soliymani R, Puustinen A, Wikstrom M (2006) Identification of a histidine-tyrosine cross-link in the active site of the cbb(3)-type cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 103:16135–16140CrossRefGoogle Scholar
  43. Rich PR (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron–copper respiratory oxidases. Aust J Plant Physiol 22:479–486CrossRefGoogle Scholar
  44. Seibold SA, Mills DA, Ferguson-Miller S, Cukier RI (2005) Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant. Biochemistry 44:10475–10485CrossRefGoogle Scholar
  45. Sharpe MA, Qin L, Ferguson-Miller S (2005) Proton entry, exit and pathways in cytochrome oxidase: insight from ‘conserved’ water. In: Wilkstrom M (ed) Biophysical and Structural Aspects of Bioenergetics. RSC Biomolecular Series, RSC Publishing, Cambridge UKGoogle Scholar
  46. Sharpe MA, McCracken J, Xu S, Krzyaniak M, Ferguson-Miller S (2008) EPR evidence of cyanide and azide binding to the Mn(Mg) center of cytochrome c oxidase: support for CuA-Mg involvement in proton pumping. Biochemistry (in press)Google Scholar
  47. Shi WJ, Hoganson CW, Espe M, Bender CJ, Babcock GT, Palmer G, Kulmacz RJ, Tsai AL (2000) Electron paramagnetic resonance and electron nuclear double resonance spectroscopic identification and characterization of the tyrosyl radicals in prostaglandin H synthase 1. Biochemistry 39:4112–4121CrossRefGoogle Scholar
  48. Smirnova IA, Adelroth P, Gennis RB, Brzezinski P (1999) Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation. Biochemistry 38:6826–6833CrossRefGoogle Scholar
  49. Vakkasoglu AS, Morgan JE, Han D, Pawate AS, Gennis RB (2006) Mutations which decouple the proton pump of the cytochrome c oxidase from Rhodobacter sphaeroides perturb the environment of glutamate 286. FEBS Lett 580:4613–4617CrossRefGoogle Scholar
  50. Verkhovskaya ML, GarciaHorsman A, Puustinen A, Rigaud JL, Morgan JE, Verkhovsky MI, Wikstrom M (1997) Glutamic acid 286 in subunit I of cytochrome bo(3) is involved in proton translocation. Proc Natl Acad Sci USA 94:10128–10131CrossRefGoogle Scholar
  51. Verkhovsky MI, Jasaitis A, Verkhovskaya ML, Morgan JE, Wikstrom M (1999) Proton translocation by cytochrome c oxidase. Nature 400:480–483CrossRefGoogle Scholar
  52. Vygodina TV, Pecoraro C, Mitchell D, Gennis R, Konstantinov AA (1998) Mechanism of inhibition of electron transfer by amino acid replacement K362M in a proton channel of Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 37:3053–3061CrossRefGoogle Scholar
  53. Wikstrom MKF (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273CrossRefGoogle Scholar
  54. Wikstrom M (2004) Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta Bioenerg 1655:241–247CrossRefGoogle Scholar
  55. Wikstrom M, Krab K (1979) Proton-pumping cytochrome c oxidase. Biochim Biophys Acta 549:177–222Google Scholar
  56. Wikstrom M, Verkhovsky MI (2007) Mechanism and energetics of proton translocation by the respiratory heme–copper oxidases. Biochim Biophys Acta Bioenerg 1767:1200–1214CrossRefGoogle Scholar
  57. Wikstrom M, Bogachev A, Finel M, Morgan JE, Puustinen A, Raitio M, Verkhovskaya M, Verkhovsky MI (1994) Mechanism of proton translocation by the respiratory oxidases—the histidine cycle. Biochim Biophys Acta Bioenerg 1187:106–111CrossRefGoogle Scholar
  58. Wrigglesworth JM, Elsden J, Chapman A, Vanderwater N, Grahn MF (1988) Activation by reduction of the resting form of cytochrome c oxidase—tests of different models and evidence for the involvement of cub. Biochim Biophys Acta 936:452–464CrossRefGoogle Scholar
  59. Xu JC, Voth GA (2006) Free energy profiles for H+ conduction in the D-pathway of cytochrome c oxidase: a study of the wild type and N98D mutant enzymes. Biochim Biophys Acta Bioenerg 1757:852–859CrossRefGoogle Scholar
  60. Xu JC, Sharpe MA, Qin L, Ferguson-Miller S, Voth GA (2007) Storage of an excess proton in the hydrogen-bonded network of the D-pathway of cytochrome c oxidase: identification of a protonated water cluster. J Am Chem Soc 129:2910–2913CrossRefGoogle Scholar
  61. Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729CrossRefGoogle Scholar
  62. Zaslavsky D, Gennis RB (1998) Substitution of lysine-362 in a putative proton-conducting channel in the cytochrome c oxidase from Rhodobacter sphaeroides blocks turnover with O2 but not with H2O2. Biochemistry 37:3062–3067CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe Methodist HospitalHoustonUSA
  2. 2.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations