Journal of Bioenergetics and Biomembranes

, Volume 40, Issue 5, pp 521–531

Cytochrome c oxidase: exciting progress and remaining mysteries

Article

Abstract

Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.

Keywords

Oxidase Cytochrome Proton Redox Energy coupling Pump Heme Copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson J, Riistama S et al (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nature Struct Biol 7:910–917CrossRefGoogle Scholar
  2. Artzatbanov VY, Konstantinov AA et al (1978) Involvement of intramitochondrial protons in redox reactions of cytochrome a. FEBS Lett 87:180–185CrossRefGoogle Scholar
  3. Babcock GT, Varotsis C (1993) Discrete steps in dioxygen activation—the cytochrome oxidase/O2 reaction. J Bioenerg Biomemb 25(2):71–80CrossRefGoogle Scholar
  4. Belevich I, Bloch DA et al (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci U S A 104(8):2685–2690CrossRefGoogle Scholar
  5. Bloch D, Belevich I et al (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. PNAS 101(2):529–533CrossRefGoogle Scholar
  6. Brändén G, Pawate AS et al (2006) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci U S A 103(2):317–322CrossRefGoogle Scholar
  7. de Vries S (2008) The role of the conserved tryptophan272 of the Paracoccus denitrificans cytochrome c oxidase in proton pumping. Biochim Biophys Acta 1777(7–8):925–928Google Scholar
  8. Fadda E, Yu CH et al (2008) Electrostatic control of proton pumping in cytochrome c oxidase. Biochim Biophys Acta 1777(3):277–284CrossRefGoogle Scholar
  9. Faxén K, Gilderson G et al (2005) A mechanistic principle for proton pumping by cytochrome c oxidase. Nature 437:286CrossRefGoogle Scholar
  10. Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 7(96):2889–2907CrossRefGoogle Scholar
  11. Fetter JR, Qian J et al (1995) Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci U S A 92:1604–1608CrossRefGoogle Scholar
  12. Gorbikova EA, Belevich NP et al (2007) Time-resolved ATR-FTIR spectroscopy of the oxygen reaction in the D124N mutant of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 46(45):13141–13148CrossRefGoogle Scholar
  13. Hallén S, Brzezinski P et al (1994) Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site. Biochemistry 33:1467–1472CrossRefGoogle Scholar
  14. Han S, Takahashi S et al (2000) Time dependence of the catalytic intermediates in cytochrome c oxidase. J Biol Chem 275(3):1910–1919CrossRefGoogle Scholar
  15. Han D, Namslauer A et al (2006) Replacing Asn207 by aspartate at the neck of the D channel in the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides results in decoupling the proton pump. Biochemistry 45(47):14064–14074CrossRefGoogle Scholar
  16. Hellwig P, Behr J et al (1998) Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FT-IR spectroscopy. Biochemistry 37:7390–7399CrossRefGoogle Scholar
  17. Hemp J, Robinson DE et al (2006) Evolutionary migration of a post-translationally modified active-site residue in the proton-pumping heme–copper oxygen reductases. Biochemistry 45(51):15405–15410CrossRefGoogle Scholar
  18. Iwata S, Ostermeier C et al (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669CrossRefGoogle Scholar
  19. Jasaitis A, Verkhovsky MI et al (1999) Assignment and charge translocation stoichiometries of the major electrogenic phases in the reaction of cytochrome c oxidase with dioxygen. Biochemistry 38:2697–2706CrossRefGoogle Scholar
  20. Kaila VR, Verkhovsky M et al (2008a) Prevention of leak in the proton pump of cytochrome c oxidase. Biochim Biophys Acta 1777(7–8):890–892Google Scholar
  21. Kaila VR, Verkhovsky MI et al (2008b) Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci U S A 105(17):6255–6259CrossRefGoogle Scholar
  22. Kannt A, Soulimane T et al (1998) Electrical current generation and proton pumping catalyzed by the ba3-type cytochrome c oxidase from Thermus thermophilus. FEBS 434:17–22CrossRefGoogle Scholar
  23. Kitagawa T, Ogura T (1997) Oxygen activation mechanism at the binuclear site of heme–copper oxidase superfamily as revealed by time-resolved resonance Raman spectroscopy. Prog Inorg Chem 45:431–479CrossRefGoogle Scholar
  24. Konstantinov AA, Siletsky S et al (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci U S A 94:9085–9090CrossRefGoogle Scholar
  25. Lee H-m, Das TK et al (2000) Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a. Biochemistry 39:2989–2996CrossRefGoogle Scholar
  26. Lepp H, Salomonsson L et al (2008a) Impaired proton pumping in cytochrome c oxidase upon structural alteration of the D pathway. Biochim Biophys Acta 1777(7–8):897–903Google Scholar
  27. Lepp H, Svahn E et al (2008b) Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase. Biochemistry 47(17):4929–4935CrossRefGoogle Scholar
  28. Luna VM, Chen Y et al (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme–Cu oxidases. Biochemistry 47(16):4657–4665CrossRefGoogle Scholar
  29. Muramoto K, Hirata K et al (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 104(19):7881–7886CrossRefGoogle Scholar
  30. Nagle JF, Tristam-Nagle S (1983) Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol 74:1–14CrossRefGoogle Scholar
  31. Namslauer A, Aagaard A et al (2003a) Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase. Bichemistry 42:1488–1498CrossRefGoogle Scholar
  32. Namslauer A, Pawate A et al (2003b) Redox-coupled proton translocation in biological systems: proton shuttling in cytochrome c oxidase. Proc Natl Acad Sci U S A 100(26):15543–15547CrossRefGoogle Scholar
  33. Nyquist RM, Heitbrink D et al (2001) Perfusion-induced redox differences in cytochrome c oxidase: ATR/FT-IR spectroscopy. FEBS Letters 505:63–67CrossRefGoogle Scholar
  34. Ogura T, Takahashi S et al (1993) Time-resolved resonance Raman elucidation of the pathway for dioxygen reduction by cytochrome c oxidase`. J Am Chem Soc 115:8527–8536CrossRefGoogle Scholar
  35. Olsson MH, Warshel A (2006) Monte Carlo simulations of proton pumps: on the working principles of the biological valve that controls proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103(17):6500–6505CrossRefGoogle Scholar
  36. Ostermeier C, Harrenga A et al (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc Natl Acad Sci U S A 94:10547–10553CrossRefGoogle Scholar
  37. Pawate AS et al (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Biochemistry 41:13417–13423CrossRefGoogle Scholar
  38. Pereira MM, Santana M et al (2001) A novel scenario for the evaluation of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208CrossRefGoogle Scholar
  39. Pereira MM, Sousa FL et al (2008) Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. Biochim Biophys Acta 1777(7–8):929–934Google Scholar
  40. Pfitzner U, Hoffmeier K et al (2000) Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 39(23):6756–6762CrossRefGoogle Scholar
  41. Pisliakov AV, Sharma PK et al (2008) Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 105(22):7726–7731CrossRefGoogle Scholar
  42. Popovic DM, Stuchebrukhov AA (2004) Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: coulomb pump model with kinetic gating. FEBS Lett 566:126–130CrossRefGoogle Scholar
  43. Popovic DM, Stuchebrukhov AA (2005) Proton exit channels in bovine cytochrome c oxidase. J Phys Chem B 109:1999–2006CrossRefGoogle Scholar
  44. Proshlyakov DA, Pressler MA et al (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science 290:1588–1591CrossRefGoogle Scholar
  45. Qin L, Hiser C et al (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci U S A 103(44):16117–16122CrossRefGoogle Scholar
  46. Qin L, Mills DA et al (2007) Crystallographic location and mutational analysis of zn and cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome C oxidase. Biochemistry 46(21):6239–6248CrossRefGoogle Scholar
  47. Rich PR (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron–copper respiratory oxidases. Aust J Plant Physiol 22:479–486CrossRefGoogle Scholar
  48. Rich PR, Meunier B et al (1996) Coupling of charge and proton movement in cytochrome c oxidase. Biochim Biophys Acta 1275:91–95CrossRefGoogle Scholar
  49. Rich PR, Jünemann S et al (1997) Protonmotive mechanism of haem-copper oxidases. J Bioenerg Biomembr 30(1):131–137CrossRefGoogle Scholar
  50. Riistama S, Hummer G et al (1997) Bound water in the proton translocation mechanism of the heme–copper oxidases. FEBS Lett 414(2):275–280CrossRefGoogle Scholar
  51. Salomonsson L, Faxen K et al (2005) The timing of proton migration in membrane-reconstituted cytochrome c oxidase. Proc Natl Acad Sci U S A 102(49):17624–17629CrossRefGoogle Scholar
  52. Shimokata K, Katayama Y et al (2007) The proton pumping pathway of bovine heart cytochrome c oxidase. Proc Natl Acad Sci U S A 104(10):4200–4205CrossRefGoogle Scholar
  53. Shinzawa-Itoh K, Aoyama H et al (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J 26(6):1713–1725CrossRefGoogle Scholar
  54. Siegbahn PE, Blomberg MR (2007) Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. Biochim Biophys Acta 1767(9):1143–1156CrossRefGoogle Scholar
  55. Siletsky SA, Pawate AS et al (2004) Transmembrane charge separation during the Ferryl-oxo ∅ oxidized transition in a nonpumping mutant of cytochrome c oxidase. J Biol Chem 279(50):52558–52565CrossRefGoogle Scholar
  56. Siletsky SA, Belevich I et al (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus. Biochim Biophys Acta 1767(12):1383–1392CrossRefGoogle Scholar
  57. Smirnova IA, Ädelroth P et al (1999) Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during Oxo-Ferryl formation. Biochemistry 38:6826–6833CrossRefGoogle Scholar
  58. Soulimane T, Buse G et al (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J 19(8):1766–1776CrossRefGoogle Scholar
  59. Sugitani R, Medvedev ES et al (2008) Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. Biochim Biophys Acta 1777:1129–1139CrossRefGoogle Scholar
  60. Svensson-Ek M, Abramson J et al (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339CrossRefGoogle Scholar
  61. Tsukihara T, Aoyama H et al (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074CrossRefGoogle Scholar
  62. Tsukihara T, Aoyama H et al (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144CrossRefGoogle Scholar
  63. Vakkasoglu AS, Morgan JE et al (2006) Mutations which decouple the proton pump of the cytochrome c oxidase from Rhodobacter sphaeroides perturb the environment of glutamate 286. FEBS Lett 580(19):4613–4617CrossRefGoogle Scholar
  64. Varotsis C, Zhang Y et al (1993) Resolution of the reaction sequence during the reduction of O2 by cytochrome oxidase. Proc Natl Acad Sci U S A 90:237–241CrossRefGoogle Scholar
  65. Verkhovsky MI, Morgan JE et al (1992) Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria. Biochemistry 31:11860–11863CrossRefGoogle Scholar
  66. Verkhovsky MI, Morgan JE et al (1994) Oxygen binding and activation: early steps in the reaction of oxygen with cytochrome c oxidase. Biochemistry 33:3079–3086CrossRefGoogle Scholar
  67. Verkhovsky MI, Morgan JE et al (1997) Translocation of electrical charge during a single turnover of cytochrome-c oxidase. Biochim Biophys Acta 1318:6–10CrossRefGoogle Scholar
  68. Wikström M (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273CrossRefGoogle Scholar
  69. Wikstrom M, Verkhovsky MI (2007) Mechanism and energetics of proton translocation by the respiratory heme–copper oxidases. Biochim Biophys Acta 1767(10):1200–1214CrossRefGoogle Scholar
  70. Wikström M, Verkhovsky MI et al (2003) Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim Biophys Acta 1604:61–65CrossRefGoogle Scholar
  71. Xu J, Sharpe MA et al (2007) Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome C oxidase: identification of a protonated water cluster. J Am Chem Soc 129(10):2910–2913CrossRefGoogle Scholar
  72. Yoshikawa S, Shinzawa-Itoh K et al (2000) X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. J Inorg Biochem 82:1–7CrossRefGoogle Scholar
  73. Zheng X, Medvedev DM et al (2003) Computer simulation of water in cytochrome c oxidase. Biochim Biophys Acta 1557:99–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholmSweden
  2. 2.Department of BiochemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations