Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria

Article

Abstract

Accumulating evidence indicates that the enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) are co-assembled into higher-ordered supercomplexes within the mitochondrial inner membrane. This review will focus largely on the OXPHOS supercomplexes of the yeast Saccharomyces cerevisiae. The recent evidence to indicate that diversity in the populations of the cytochrome bc1-COX supercomplexes exist shall be outlined. In addition, the existence of dimeric/oligomeric F1Fo-ATP synthase complexes and their proposed role in establishment of the cristae architecture of the inner mitochondrial membrane shall also be discussed.

Keywords

Mitochondria Oxidative phosphorylation Supercomplex Cytochrome bc1 Cytochrome oxidase F1Fo-ATP synthase Cristae morphology 

References

  1. Acín-Pérez R, Bayona-Bafaluy MP, Fernández-Silva P, Moreno-Loshuertos R, Pérez-Martos A, Bruno C, Moraes CT, Enríquez JA (2004) Mol Cell 13:805–815CrossRefGoogle Scholar
  2. Allen RD (1995) Protoplasma 189:1–8CrossRefGoogle Scholar
  3. Amutha B, Gordon DM, Gu Y, Pain D (2004) Biochem J 381:19–23CrossRefGoogle Scholar
  4. Arnold I, Bauer MF, Brunner M, Neupert W, Stuart RA (1997) FEBS Lett 411:195–200CrossRefGoogle Scholar
  5. Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1998) EMBO J 17:7170–7178CrossRefGoogle Scholar
  6. Arselin G, Vaillier J, Salin B, Schaeffer J, Giraud MF, Dautant A, Brèthes D, Velours J (2004) J Biol Chem 279:40392–40399CrossRefGoogle Scholar
  7. Barrientos A, Zambrano A, Tzagoloff A (2004) EMBO J 23:3472–3482CrossRefGoogle Scholar
  8. Boekema EJ, Braun HP (2007) J Biol Chem 282:1–4CrossRefGoogle Scholar
  9. Bornhövd C, Vogel F, Neupert W, Reichert AS (2006) J Biol Chem 281:13990–13998CrossRefGoogle Scholar
  10. Boyle GM, Roucou X, Nagley P, Devenish RJ, Prescott M (1999) Eur J Biochem 262:315–323CrossRefGoogle Scholar
  11. Brunner S, Everard-Gigot V, Stuart RA (2002) J Biol Chem 277:48484–48489CrossRefGoogle Scholar
  12. Bustos DM, Velours J (2005) J Biol Chem 280:29004–29010CrossRefGoogle Scholar
  13. Cruciat C, Brunner S, Baumann F, Neupert W, Stuart RA (2000) J Biol Chem 275:18093–18098CrossRefGoogle Scholar
  14. Devenish RJ, Prescott M, Rodgers AJ (2008) Int Rev Cell Mol Biol 267:1–58CrossRefGoogle Scholar
  15. Dienhart MK, Stuart RA (2008) Mol Biol Cell Jul 9. [Epub ahead of print]Google Scholar
  16. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Proc Natl Acad Sci U.S A. 102:3225–3229CrossRefGoogle Scholar
  17. Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006a) Trends Plant Sci 11:232–220CrossRefGoogle Scholar
  18. Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ (2006b) FEBS Lett 580:3427–3432CrossRefGoogle Scholar
  19. Eubel H, Jänsch L, Braun HP (2003) Plant Physiol 133:274–286CrossRefGoogle Scholar
  20. Everard-Gigot V, Dunn CD, Dolan BM, Brunner S, Jensen RE, Stuart RA (2005) Eukaryot Cell 4:346–355CrossRefGoogle Scholar
  21. Gilkerson RW, Selker JM, Capaldi RA (2003) FEBS Lett 546:355–358CrossRefGoogle Scholar
  22. Giraud MF, Paumard P, Soubannier V, Vaillier J, Arselin G, Salin B, Schaeffer J, Brèthes D, di Rago JP, Velours J (2002) Biochim Biophys Acta 1555:174–180CrossRefGoogle Scholar
  23. Glerum DM, Koerner TJ, Tzagoloff A (1995) J Biol Chem 270:15585–15590CrossRefGoogle Scholar
  24. Grandier-Vazeille X, Bathany K, Chaignepain S, Camougrand N, Manon S, Schmitter JM (2001) Biochemistry 40:9758–9769CrossRefGoogle Scholar
  25. Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) J Biol Chem 282:12240–12248CrossRefGoogle Scholar
  26. Hoppins S, Lackner L, Nunnari J (2007) Annu Rev Biochem 76:751–780CrossRefGoogle Scholar
  27. Krause F, Reifschneider NH, Goto S, Dencher NA (2005) Biochem Biophys Res Commun 329:583–590CrossRefGoogle Scholar
  28. Kutik S, Guiard B, Meyer HE, Wiedemann N, Pfanner N (2007) J Cell Biol 179:585–591CrossRefGoogle Scholar
  29. Lenaz G, Genova ML (2007) Am J Physiol Cell Physiol 292:C1221–C1239CrossRefGoogle Scholar
  30. Marques I, Dencher NA, Videira A, Krause F (2007) Eukaryot Cell 6:2391–2405CrossRefGoogle Scholar
  31. Mashkevich G, Repetto B, Glerum DM, Jin C, Tzagoloff A (1997) J Biol Chem 272:14356–14364CrossRefGoogle Scholar
  32. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) J Mol Biol 361:462–429CrossRefGoogle Scholar
  33. Mick DU, Wagner K, van der Laan M, Frazier AE, Perschil I, Pawlas M, Meyer HE, Warscheid B, Rehling P (2007) EMBO J 26:4347–4358CrossRefGoogle Scholar
  34. Minauro-Sanmiguel F, Wilkens S, Garcia JJ (2005) Proc Natl Acad Sci U S A 102:12356–12358CrossRefGoogle Scholar
  35. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J (2002) EMBO J 21:221–230CrossRefGoogle Scholar
  36. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJ, Brandolin G (2003) Nature 426:39–44CrossRefGoogle Scholar
  37. Peters K, Dudkina NV, Jänsch L, Braun HP, Boekema EJ (2008) Biochim Biophys Acta 1777:84–93CrossRefGoogle Scholar
  38. Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H (2003) Biol Chem 278:52873–52880CrossRefGoogle Scholar
  39. Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, Slonimski PP, Rytka J, di Rago JP (2007a) J Biol Chem 282:10853–10864CrossRefGoogle Scholar
  40. Rak M, Tetaud E, Duvezin-Caubet S, Ezkurdia N, Bietenhader M, Rytka J, di Rago JP (2007b) J Biol Chem 282:34039–34047CrossRefGoogle Scholar
  41. Saddar S, Stuart RA (2005) J Biol Chem 280:24435–24442CrossRefGoogle Scholar
  42. Saddar S, Dienhart MK, Stuart RA (2008) J Biol Chem 283:6677–6686CrossRefGoogle Scholar
  43. Saraste M (1999) Science 283:1488–1493CrossRefGoogle Scholar
  44. Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) J Biol Chem 281:15370–15375CrossRefGoogle Scholar
  45. Schäfer E, Dencher NA, Vonck J, Parcej DN (2007) Biochemistry 46:12579–12585CrossRefGoogle Scholar
  46. Schägger H (2002) Biochim Biophys Acta 1555:154–159CrossRefGoogle Scholar
  47. Schägger H, Pfeiffer K (2000) EMBO J 19:1777–17783CrossRefGoogle Scholar
  48. Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) J Biol Chem 279:36349–36353CrossRefGoogle Scholar
  49. Schleyer M, Neupert W (1985) Cell 43:339–350CrossRefGoogle Scholar
  50. Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) EMBO J 27:1154–1160CrossRefGoogle Scholar
  51. Thomas D, Bron P, Weimann T, Dautant A, Giraud MF, Paumard P, Salin B, Cavalier A, Velours J, Brèthes D (2008) Biol Cell Apr 30, in pressGoogle Scholar
  52. Vaillier J, Arselin G, Graves PV, Camougrand N, Velours J (1999) J Biol Chem 274:543–548CrossRefGoogle Scholar
  53. van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N (2006) Curr Biol 16:2271–2276CrossRefGoogle Scholar
  54. Vázquez-Acevedo M, Cardol P, Cano-Estrada A, Lapaille M, Remacle C, González-Halphen D (2006) J Bioenerg Biomembr 38:271–282CrossRefGoogle Scholar
  55. Vonck J, Schäfer E (2008) Biochim Biophys Acta 2008 Jun 3, in pressGoogle Scholar
  56. Weimann T, Vaillier J, Salin B, Velours J (2008) Biochemistry 47:3556–3563CrossRefGoogle Scholar
  57. Wiedemann N, van der Laan M, Hutu DP, Rehling P, Pfanner N (2007) J Cell Biol 179:1115–1122CrossRefGoogle Scholar
  58. Wittig I, Velours J, Stuart R, Schägger H (2008) Cell Proteomics 7:995–1004CrossRefGoogle Scholar
  59. Zara V, Conte L, Trumpower BL (2007) FEBS J 274:4526–4539CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dept. of Biological SciencesMarquette UniversityMilwaukeeUSA

Personalised recommendations