Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span

  • Graciele A. Oliveira
  • Erich B. Tahara
  • Andreas K. Gombert
  • Mario H. Barros
  • Alicia J. Kowaltowski
Article

Abstract

Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.

Keywords

Calorie restriction Crabtree effect Free radicals Aging Respiration 

References

  1. Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) J Biol Chem 279:49883–49888CrossRefGoogle Scholar
  2. Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C (2001) Exp Gerontol 36:21–28CrossRefGoogle Scholar
  3. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Yeast 14:115–132CrossRefGoogle Scholar
  4. Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero II, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wesolowski-Louvel M, Zeeman AM (2000) Enzyme Microb Technol 26:771–780CrossRefGoogle Scholar
  5. De Deken RH (1966) J Gen Microbiol 44:149–156Google Scholar
  6. Fabrizio P, Longo VD (2003) Aging Cell 2:73–81CrossRefGoogle Scholar
  7. Faye G, Kujawa C, Fukuhara H (1974) J Mol Biol 88:185–203CrossRefGoogle Scholar
  8. Ferranti R, da Silva MM, Kowaltowski AJ (2003) FEBS Lett 536:51–55CrossRefGoogle Scholar
  9. Gancedo JM (1998) Microbiol Mol Biol Rev 62:334–361Google Scholar
  10. Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) FASEB J 14:2135–2137Google Scholar
  11. Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005) PLoS Genet 1:e69CrossRefGoogle Scholar
  12. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Science 309:1829–1833CrossRefGoogle Scholar
  13. Lambert AJ, Merry BJ (2004) Am J Physiol Regul Integr Comp Physiol 286:R71–R79Google Scholar
  14. Lin SJ, Guarente L (2003) Curr Opin Cell Biol 15:241–246CrossRefGoogle Scholar
  15. Lin SJ, Defossez PA, Guarente L (2000) Science 289:2126–2128CrossRefGoogle Scholar
  16. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Nature 418:344–348CrossRefGoogle Scholar
  17. Partridge L, Gems D (2002) Nature Rev Genet 3:165–175CrossRefGoogle Scholar
  18. Rodríguez C, Gancedo JM (1999) Mol Cell Biol Res Commun 1:52–58CrossRefGoogle Scholar
  19. Sinclair D, Mills K, Guarente L (1998) Ann Rev Microbiol 52:533–560CrossRefGoogle Scholar
  20. Smith DL, McClure JM, Matecic M, Smith JS (2007) Aging Cell 6:649–662CrossRefGoogle Scholar
  21. Tahara EB, Barros MH, Oliveira GA, Netto LE, Kowaltowski AJ (2007) FASEB J 21:274–283CrossRefGoogle Scholar
  22. Tzagoloff A, Akai A, Needleman RB (1975) J Biol Chem 250:8228–8235Google Scholar
  23. Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield, ILGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Graciele A. Oliveira
    • 1
  • Erich B. Tahara
    • 1
  • Andreas K. Gombert
    • 2
  • Mario H. Barros
    • 3
  • Alicia J. Kowaltowski
    • 1
  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Engenharia Química, Escola PolitécnicaUniversidade de São PauloSão PauloBrazil
  3. 3.Departamento de Microbiologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil

Personalised recommendations