Electron and proton transfer in the ba 3 oxidase from Thermus thermophilus

  • Irina A. Smirnova
  • Dmitry Zaslavsky
  • James A. Fee
  • Robert B. Gennis
  • Peter Brzezinski
Article

Abstract

The ba 3-type cytochrome c oxidase from Thermus thermophilus is phylogenetically very distant from the aa 3–type cytochrome c oxidases. Nevertheless, both types of oxidases have the same number of redox-active metal sites and the reduction of O2 to water is catalysed at a haem a 3-CuB catalytic site. The three-dimensional structure of the ba 3 oxidase reveals three possible proton-conducting pathways showing very low homology compared to those of the mitochondrial, Rhodobacter sphaeroides and Paracoccus denitrificans aa 3 oxidases. In this study we investigated the oxidative part of the catalytic cycle of the ba 3 -cytochrome c oxidase using the flow-flash method. After flash-induced dissociation of CO from the fully reduced enzyme in the presence of oxygen we observed rapid oxidation of cytochrome b (k≅6.8 × 104 s−1) and formation of the peroxy (PR) intermediate. In the next step a proton was taken up from solution with a rate constant of ∼1.7 × 104 s−1, associated with formation of the ferryl (F) intermediate, simultaneous with transient reduction of haem b. Finally, the enzyme was oxidized with a rate constant of ∼1,100 s−1, accompanied by additional proton uptake. The total proton uptake stoichiometry in the oxidative part of the catalytic cycle was ~1.5 protons per enzyme molecule. The results support the earlier proposal that the PR and F intermediate spectra are similar (Siletsky et al. Biochim Biophys Acta 1767:138, 2007) and show that even though the architecture of the proton-conducting pathways is different in the ba 3 oxidases, the proton-uptake reactions occur over the same time scales as in the aa 3-type oxidases.

Keywords

Cytochrome ba3 Proton uptake Electron transfer Respiration Haem-copper 

References

  1. Ädelroth P, Svensson Ek M, Mitchell DM, Gennis RB, Brzezinski P (1997) Glutamate 286 in cytochrome aa3 from Rhodobacter sphaeroides is involved in proton uptake during the reaction of the fully-reduced enzyme with dioxygen. Biochemistry 36(45):13824–13829CrossRefGoogle Scholar
  2. Ädelroth P, Ek M, Brzezinski P (1998) Factors determining electron-transfer rates in cytochrome c oxidase: investigation of the oxygen reaction in the R. sphaeroides and bovine enzymes. Biochim Biophys Acta 1367(1–3):107–117Google Scholar
  3. Brändén G, Gennis RB, Brzezinski P (2006) Transmembrane proton translocation by cytochrome c oxidase. Biochim Biophys Acta 1757(8):1052–1063CrossRefGoogle Scholar
  4. Belevich I, Verkhovsky MI (2008) Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10(1):1–29CrossRefGoogle Scholar
  5. Blomberg LM, Blomberg MR, Siegbahn PE (2006) A theoretical study on nitric oxide reductase activity in a ba3-type heme-copper oxidase. Biochim Biophys Acta 1757(1):31–46CrossRefGoogle Scholar
  6. Brunori M, Giuffre A, Sarti P (2005) Cytochrome c oxidase, ligands and electrons. J Inorg Biochem 99(1):324–336CrossRefGoogle Scholar
  7. Brzezinski P, Ädelroth P (2006) Design principles of proton-pumping haem-copper oxidases. Curr Opin Struct Biol 16(4):465–472CrossRefGoogle Scholar
  8. Chen Y, Hunsicker-Wang L, Pacoma RL, Luna E, Fee JA (2005) A homologous expression system for obtaining engineered cytochrome ba 3 from Thermus thermophilus HB8. Protein Expr Purif 40:299–318CrossRefGoogle Scholar
  9. Einarsdóttir Ó (1995) Fast reactions of cytochrome-oxidase. Biochim Biophys Acta 1229(2):129–147CrossRefGoogle Scholar
  10. Faxén K, Gilderson G, Ädelroth P, Brzezinski P (2005) A mechanistic principle for proton pumping by cytochrome c oxidase. Nature 437(7056):286–289CrossRefGoogle Scholar
  11. Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96(7):2889–2907CrossRefGoogle Scholar
  12. Giuffrè A, Forte E, Antonini G, D'Itri E, Brunori M, Soulimane T, Buse G (1999) Kinetic properties of ba3 oxidase from Thermus thermophilus: effect of temperature. Biochemistry 38(3):1057–1065CrossRefGoogle Scholar
  13. Hosler JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Ann Rev Biochem 75:165–187CrossRefGoogle Scholar
  14. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376(6542):660–669CrossRefGoogle Scholar
  15. Jasaitis A, Verkhovsky MI, Morgan JE, Verkhovskaya ML, Wikström M (1999) Assignment and charge translocation stoichiometries of the major electrogenic phases in the reaction of cytochrome c oxidase with dioxygen. Biochemistry 38(9):2697–2706CrossRefGoogle Scholar
  16. Kannt A, Soulimane T, Buse G, Becker A, Bamberg E, Michel H (1998) Electrical current generation and proton pumping catalyzed by the ba3- type cytochrome c oxidase from Thermus thermophilus. FEBS Lett 434(1–2):17–22CrossRefGoogle Scholar
  17. Keightley JA, Zimmermann BH, Mather MW, Springer P, Pastuszyn A, Lawrence DM, Fee JA (1995) Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8. J Biol Chem 270(35):20345–20358CrossRefGoogle Scholar
  18. Namslauer A, Brzezinski P (2004) Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase. FEBS Lett 567(1):103–110CrossRefGoogle Scholar
  19. Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A 94(20):10547–10553CrossRefGoogle Scholar
  20. Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta-Bioenerg 1505(2–3):185–208CrossRefGoogle Scholar
  21. Siletsky SA, Belevich I, Jasaitis A, Konstantinov AA, Wikström M, Soulimane T, Verkhovsky MI (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus. Biochim Biophys Acta 1767(12):1383–1392CrossRefGoogle Scholar
  22. Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from Thermus thermophilus. EMBO J 19(8):1766–1776CrossRefGoogle Scholar
  23. Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339CrossRefGoogle Scholar
  24. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272(5265):1136–1144CrossRefGoogle Scholar
  25. Wikström M, Morgan JE (1992) The dioxygen cycle. Spectral, kinetic, and thermodynamic characteristics of ferryl and peroxy intermediates observed by reversal of the cytochrome oxidase reaction. J Biol Chem 267(15):10266–10273Google Scholar
  26. Wikström M, Verkhovsky MI (2002) Proton translocation by cytochrome c oxidase in different phases of the catalytic cycle. Biochim Biophys Acta (BBA) - Bioenerg 1555(1–3):128–132CrossRefGoogle Scholar
  27. Wikström M, Verkhovsky MI (2006) Towards the mechanism of proton pumping by the haem-copper oxidases. Biochim Biophys Acta - Bioenerg 1757(8):1047–1051CrossRefGoogle Scholar
  28. Wikström M, Verkhovsky MI (2007) Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. Biochim Biophys Acta (BBA) - Bioenerg 1767(10):1200–1214CrossRefGoogle Scholar
  29. Yoshikawa S, Shinzawa-Itoh K, Tsukihara T (1998) Crystal structure of bovine heart cytochrome c oxidase at 2.8 A resolution. J Bioenerg Biomembr 30(1):7–14CrossRefGoogle Scholar
  30. Zimmermann BH, Nitsche CI, Fee JA, Rusnak F, Munck E (1988) Properties of a copper-containing cytochrome ba3: a second terminal oxidase from the extreme thermophile Thermus thermophilus. Proc Natl Acad Sci U S A 85(16):5779–5783CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Irina A. Smirnova
    • 1
  • Dmitry Zaslavsky
    • 1
  • James A. Fee
    • 2
  • Robert B. Gennis
    • 3
  • Peter Brzezinski
    • 4
  1. 1.A.N.Belozersky Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA
  3. 3.Department. of BiochemistryUniversity of IllinoisUrbanaUSA
  4. 4.Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholmSweden

Personalised recommendations