Skip to main content
Log in

VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The voltage dependent anion channel (VDAC), located in the outer mitochondrial membrane, functions as a major channel allowing passage of small molecules and ions between the mitochondrial inter-membrane space and cytoplasm. Together with the adenine nucleotide translocator (ANT), which is located in the inner mitochondrial membrane, the VDAC is considered to form the core of a mitochondrial multiprotein complex, named the mitochondrial permeability transition pore (MPTP). Both VDAC and ANT appear to take part in activation of the mitochondrial apoptosis pathway. Other proteins also appear to be associated with the MPTP, for example, the 18 kDa mitochondrial Translocator Protein (TSPO), Bcl-2, hexokinase, cyclophylin D, and others. Interactions between VDAC and TSPO are considered to play a role in apoptotic cell death. As a consequence, due to its apoptotic functions, the TSPO has become a target for drug development directed to find treatments for neurodegenerative diseases and cancer. In this context, TSPO appears to be involved in the generation of reactive oxygen species (ROS). This generation of ROS may provide a link between activation of TSPO and of VDAC, to induce activation of the mitochondrial apoptosis pathway. ROS are known to be able to release cytochrome c from cardiolipins located at the inner mitochondrial membrane. In addition, ROS appear to be able to activate VDAC and allow VDAC mediated release of cytochrome c into the cytosol. Release of cytochrome c from the mitochondria forms the initiating step for activation of the mitochondrial apoptosis pathway. These data provide an understanding regarding the mechanisms whereby VDAC and TSPO may serve as targets to modulate apoptotic rates. This has implications for drug design to treat diseases such as neurodegeneration and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) J Biol Chem 283:13482–13490

    Article  CAS  Google Scholar 

  • Adams JM, Cory S (2001) Trends Biochem Sci 26:61–66

    Article  CAS  Google Scholar 

  • Amitani M, Ohashi A, Hatazawa J, Gee A, Inoue O (2008) Synapse 62:253–258

    Article  CAS  Google Scholar 

  • Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) Biochem J 377:347–355

    Article  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Nat Cell Biol 9:550–555

    Article  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Nature 434:658–662

    Article  CAS  Google Scholar 

  • Banerjee J, Ghosh S (2006) J Neurochem 98:670–676

    Article  CAS  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) J Biol Chem 280:18558–18561

    Article  CAS  Google Scholar 

  • Beurdeley-Thomas A, Miccoli L, Oudard S, Dutrillaux B, Poupon MF (2000) J Neurooncol 46:45–56

    Article  CAS  Google Scholar 

  • Blanchetot C, Boonstra J (2008) Crit Rev Eukaryot Gene Expr 18:35–45

    CAS  Google Scholar 

  • Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M, Bernardi P, Rasola A (2008) PLoS ONE 3:e1852

    Article  Google Scholar 

  • Colombini M (2004) Mol Cell Biochem 256–257:107–115

    Article  Google Scholar 

  • Crompton M, Virji S, Ward JM (1998) Eur J Biochem 258:729–735

    Article  CAS  Google Scholar 

  • De Pinto V, Messina A, Accardi R, Aiello R, Guarino F, Tomasello MF, Tommasino M, Tasco G, Casadio R, Benz R, De Giorgi F, Ichas F, Baker M, Lawen A (2003) Ital J Biochem 52:17–24

    Google Scholar 

  • Desagher S, Martinou JC (2000) Trends Cell Biol 10:369–377

    Article  CAS  Google Scholar 

  • Dröge W, Schipper HM (2007) Aging Cell 6:361–370

    Article  Google Scholar 

  • Galiegue S, Tinel N, Casellas P (2003) Curr Med Chem 10:1563–1572

    Article  CAS  Google Scholar 

  • Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, Weizman A (1999) Pharmacol Rev 51:629–650

    CAS  Google Scholar 

  • Golani I, Weizman A, Leschiner S, Spanier I, Eckstein N, Limor R, Yanai J, Maaser K, Scherübl H, Weisinger G, Gavish M (2001) Biochemistry 40:10213–10222

    Article  CAS  Google Scholar 

  • Gonçalves RP, Buzhynskyy N, Prima V, Sturgis JN, Scheuring S (2007) J Mol Biol 369:413–418

    Article  Google Scholar 

  • Green DR, Evan GI (2002) Cancer Cell 1:19–30

    Article  CAS  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) Biochimie 84:153–166

    Article  CAS  Google Scholar 

  • Held-Kuznetsov V, Premkumar A, Veenman L, Kugler W, Leschiner S, Spanier I, Lakomek M, Pasternak GW, Gavish M (2005) Rev Neurosci 16(Suppl 1):S30

    Google Scholar 

  • Jendrossek V, Kugler W, Erdlenbruch B, Eibl H, Lang F, Lakomek M (2001) Anticancer Res 21:3389–3396

    CAS  Google Scholar 

  • Jiang J, Huang Z, Zhao Q, Feng W, Belikova NA, Kagan VE (2008) Biochem Biophys Res Commun 368:145–150

    Article  CAS  Google Scholar 

  • Joseph-Liauzun E, Farges R, Delmas P, Ferrara P, Loison G (1997) J Biol Chem 272:28102–28106

    Article  CAS  Google Scholar 

  • Jung JY, Han CR, Jeong YJ, Kim HJ, Lim HS, Lee KH, Park HO, Oh WM, Kim SH, Kim WJ (2007) Neurosci Lett 411:222–227

    Article  CAS  Google Scholar 

  • Khemiri A, Jouenne T, Cosette P (2008) FEMS Microbiol Lett 278:171–176

    Article  CAS  Google Scholar 

  • Kluza J, Lansiaux A, Wattez N, Hildebrand MP, Léonce S, Pierré A, Hickman JA, Bailly C (2002) Biochem Pharmacol 63:1443–1452

    Article  CAS  Google Scholar 

  • Kugler W, Erdlenbruch B, Otten K, Jendrossek V, Eibl H, Lakomek M (2004) Int J Oncol 25:1721–1727

    CAS  Google Scholar 

  • Kugler W, Buchholz F, Köhler F, Eibl H, Lakomek M, Erdlenbruch B (2005) Apoptosis 10:1163–1174

    Article  CAS  Google Scholar 

  • Kugler W, Linnemannstöns K, Veenman L, Gavish M, Lakomek M (2006) Neural Plasticity 2007:56

    Google Scholar 

  • Kugler W, Veenman L, Shandalov Y, Leschiner S, Spanier I, Lakomek M, Gavish M (2008) Cell Oncol (in press)

  • Kuznetsov V, Premkumar A, Veenman L, Leschiner S, Spanier I, Pasternak GW, Gavish M (2005) Program No. 673.4. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience (online)

  • Lacapère JJ, Papadopoulos V (2003) Steroids 68:569–585

    Article  Google Scholar 

  • Lau AT, Wang Y, Chiu JF (2008) J Cell Biochem 104:657–667

    Article  CAS  Google Scholar 

  • Le Bras M, Clément MV, Pervaiz S, Brenner C (2005) Histol Histopathol 20:205–219

    Google Scholar 

  • Levin E, Premkumar A, Veenman L, Kugler W, Leschiner S, Spanier I, Weisinger G, Lakomek M, Weizman A, Snyder SH, Pasternak GW, Gavish M (2005) Biochemistry 44:9924–9935

    Article  CAS  Google Scholar 

  • Madesh M, Hajnoczky G (2001) J Cell Biol 155:1003–1015

    Article  CAS  Google Scholar 

  • Maniv I, Veenman L, Leschiner S, Spanier I, Marek I, Shterenberg A, Hadad E, Gavish M (2007) Neural Plasticity 2007:73

    Google Scholar 

  • McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Proc Natl Acad Sci U S A 89:3170–3174

    Article  CAS  Google Scholar 

  • McMillin JB, Dowhan W (2002) Biochim Biophys Acta 1585:97–107

    CAS  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Nature 434:652–658

    Article  CAS  Google Scholar 

  • Nishimura G, Proske RJ, Doyama H, Higuchi M (2001) FEBS Lett 505:399–404

    Article  CAS  Google Scholar 

  • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Biochem J 351:183–193

    Article  CAS  Google Scholar 

  • Papadopoulos V, Boujrad N, Ikonomovic MD, Ferrara P, Vidic B (1994) Mol Cell Endocrinol 104:R5–R9

    Article  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Trends Pharmacol Sci 27:402–409

    Article  CAS  Google Scholar 

  • Pastorino JG, Hoek JB, Shulga N (2005) Cancer Res 65:10545–10554

    Article  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Paradies G (2003) FASEB J 17:2202–2208

    Article  CAS  Google Scholar 

  • Reymann S, Florke H, Heiden M, Jakob C, Stadtmuller U, Steinacker P, Lalk VE, Pardowitz I, Thinnes FP (1995) Biochem Mol Med 54:75–87

    Article  CAS  Google Scholar 

  • Roman I, Figys J, Steurs G, Zizi M (2006) Biochim Biophys Acta 1758:479–486

    Article  CAS  Google Scholar 

  • Ryu JK, Choi HB, McLarnon JG (2005) Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 20:550–561

    Article  CAS  Google Scholar 

  • Sade H, Khandre NS, Mathew MK, Sarin A (2004) Eur J Immunol 34:119–125

    Article  CAS  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Proc Natl Acad Sci USA 102:12005–12010

    Article  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  Google Scholar 

  • Schwarzer C, Barnikol-Watanabe S, Thinnes FP, Hilschmann N (2002) Int J Biochem Cell Biol 34:1059–1070

    Article  CAS  Google Scholar 

  • Shafir I, Feng W, Shoshan-Barmataz V (1998) J Bioenerg Biomembr 30:499–510

    Article  CAS  Google Scholar 

  • Shandalov Y, Veenman L, Leschiner S, Kugler W, Lakomek M, Gavish M (2007) Translocator Protein ligands attenuate the mitochondrial membrane collapse normally induced by the antineoplastic agent Erucylphosphohomocholine. Neural Plasticity 2007:100

    Google Scholar 

  • Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Natl Acad Sci U S A 95:1455–1459

    Article  CAS  Google Scholar 

  • Shimizu S, Shinohara Y, Tsujimoto Y (2000) Oncogene 19:4309–4318

    Article  CAS  Google Scholar 

  • Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y (2001) J Cell Biol 152:237–250

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Gincel D (2003) Cell Biochem Biophys 39:279–292

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) Curr Pharm Des 12:2249–2270

    Article  CAS  Google Scholar 

  • Shoukrun R, Veenman L, Shandalov Y, Leschiner S, Spanier I, Karry RM, Katz Y, Weisinger G, Weizman A, Gavish M (in press) Pharmacogenetics and Genomics

  • Slocinska M, Szewczyk A, Hryniewiecka L, Kmita H (2004) Acta Biochim Pol 51:953–962

    CAS  Google Scholar 

  • Smith DJ, Ng H, Kluck RM, Nagley P (2008) The mitochondrial gateway to cell death. IUBMB Life 60:383–389

    Article  Google Scholar 

  • Soustiel JF, Palzur E, Vlodavsky E, Veenman L, Gavish M (2007) Neuropathol Appl Neurobiol (in press, Oct 31)

  • Swerdlow RH (2007) Antioxid Redox Signal 9:1591–1603

    Article  CAS  Google Scholar 

  • Tsujimoto Y (2003) J Cell Physiol 195:158–167

    Article  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Apoptosis 12:835–840

    Article  CAS  Google Scholar 

  • Veenman L, Gavish M (2000) Drug Dev Res 50:355–370

    Article  CAS  Google Scholar 

  • Veenman L, Gavish M (2006) Pharmacol Ther 110:503–524

    Article  CAS  Google Scholar 

  • Veenman L, Leschiner S, Spanier I, Weisinger G, Weizman A, Gavish M (2002) PK11195 attenuates kainic acid-induced seizures and alterations in peripheral-type benzodiazepine receptor (PBR) protein components in the rat brain. J Neurochem 80:917–927

    Article  CAS  Google Scholar 

  • Veenman L, Levin E, Weisinger G, Leschiner S, Spanier I, Snyder SH, Weizman A, Gavish M (2004) Biochem Pharmacol 68:689–698

    Article  CAS  Google Scholar 

  • Veenman L, Papadopoulos V, Gavish M (2007) Curr Pharm Des 13:2385–2405

    Article  CAS  Google Scholar 

  • Veiga S, Azcoitia I, Garcia-Segura LM (2005) J Neurosci Res 80:129–137

    Article  CAS  Google Scholar 

  • Verrier F, Mignotte B, Jan G, Brenner C (2003) Ann N Y Acad Sci 1010:126–142

    Article  CAS  Google Scholar 

  • Vyssokikh MY, Brdiczka D (2003) Acta Biochim Pol 50:389–404

    CAS  Google Scholar 

  • Wang X (2001) Genes Dev 15:2922–2933

    CAS  Google Scholar 

  • Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) Cell Death Differ 12:751–760

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Gavish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veenman, L., Shandalov, Y. & Gavish, M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 40, 199–205 (2008). https://doi.org/10.1007/s10863-008-9142-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9142-1

Keywords

Navigation